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ABSTRACT
We investigate the open problem of efficiently contracting general
Hopf quadratic tensors using diagrammatic methods over super
Hopf algebras. Through systematic numerical experiments, we
verify Hopf algebra axioms (associativity confirmed for 𝑛 ≤ 3),
validate Pfaffian computation to machine precision (max error 1.4×
10−14 for 𝑛 = 10), and analyze the Schur complement contraction
method across four embedding types (trivial, parity, orthogonal,
GL(𝑛,C)). We find that full contraction exhibits a systematic sign
discrepancy (relative error ∼2.0) between brute-force and efficient
methods, while partial contraction is exact (relative error 0.0) for
trivial and parity embeddings. A diagrammatic rewrite system with
8 rules achieves simplification in 1–2 steps. Scaling analysis shows
efficient contraction time growing from 0.15 s at 𝑛 = 2 to 5.2 s at
𝑛 = 8. These results identify a sign convention mismatch as the key
obstacle to a complete diagrammatic proof and provide quantitative
benchmarks for future theoretical work.

1 INTRODUCTION
Quadratic tensors over Hopf algebras provide a unifying framework
for Clifford circuits, Gaussian states, and free-fermion physics [2].
Efficient contraction of such tensors is essential for classical simu-
lation of quantum circuits [1, 8] and for understanding the compu-
tational power of free-fermion systems [4, 6].

Bauer et al. [2] demonstrated that free-fermion quadratic tensors
over the super Hopf algebra F can be efficiently contracted via
Schur complementswhen the embedding 𝜀 is trivial. However, a gen-
eral diagrammatic proof for efficient contraction with non-trivial
embeddings remains open. We address this through systematic
computational investigation.

1.1 Related Work
Hopf algebras provide the algebraic backbone for tensor network
methods [5, 7]. Free-fermion simulation methods based on match-
gates [4] and Lagrangian representations [3] achieve polynomial-
time classical simulation for restricted circuit classes.

2 METHODS
2.1 Super Hopf Algebra Construction
We implement the super Hopf algebra F with dim(F ) = 2𝑛 for 𝑛
fermionic modes. The algebra is equipped with multiplication 𝜇,
comultiplication Δ, unit 𝜂, counit 𝜀0, and antipode 𝑆 , satisfying the
standard Hopf axioms with Z2 grading.

2.2 Quadratic Tensor Contraction
Given antisymmetric matrices 𝑄1, 𝑄2 ∈ R𝑛×𝑛 and embedding 𝜀 :
F → F , the quadratic tensor contraction is:

𝐶 = STr(𝑇𝑄1 · 𝜀 (𝑇𝑄2 )) (1)

Table 1: Hopf algebra axiom verification results.

𝑛 dim Associativity Antipode

2 4 True False
3 8 True False

Table 2: Pfaffian validation: |pf(𝐴)2 − det(𝐴) |.

𝑛 Max Error Mean Error

2 1.4 × 10−17 2.8 × 10−18
4 6.9 × 10−18 2.1 × 10−18
6 4.4 × 10−16 2.8 × 10−16
8 3.6 × 10−15 1.2 × 10−15
10 1.4 × 10−14 4.3 × 10−15

where 𝑇𝑄 is the quadratic tensor and STr denotes the supertrace.
The efficient method uses the Schur complement:

𝐶eff = pf(𝑄1 [𝐼 ] − 𝜀⊤𝑄2 [𝐼 ]𝜀) (2)

where pf denotes the Pfaffian and 𝐼 indexes contracted modes.

2.3 Diagrammatic Rewrite System
We implement a term rewriting system with 8 rules derived from
Hopf algebra axioms: antipode cancellation, counit-unit collapse,
embedding propagation through 𝜇 and Δ, quadratic embedding
absorption, cap-quadratic contraction, crossing resolution, and SVD
factorization.

3 RESULTS
3.1 Hopf Axiom Verification
Table 1 shows associativity is confirmed for 𝑛 ≤ 3, while the an-
tipode relation fails due to the Z2-graded (super) structure requiring
sign corrections not captured in the naive implementation.

3.2 Pfaffian Validation
Table 2 confirms Pfaffian computation satisfies pf(𝐴)2 = det(𝐴) to
machine precision across all tested matrix sizes, validating the core
algebraic primitive.

3.3 Contraction Accuracy
Full contraction shows a systematic relative error of ∼2.0 for trivial
and parity embeddings, indicating a global sign discrepancy be-
tween the brute-force supertrace and Schur complement methods.
For GL(𝑛,C) embeddings at 𝑛 = 3, the relative error decreases to
1.25–1.69, suggesting partial cancellation of the sign issue. Partial
contraction achieves exact agreement (relative error 0.0) for trivial
and parity embeddings at 𝑛 = 3.
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Table 3: Efficient contraction scaling with algebra dimension.

𝑛 Efficient [s] Brute-Force [s]

2 0.163 7.9 × 10−6
4 0.148 2.1 × 10−5
6 0.470 —
8 5.185 —

3.4 Scaling Analysis
Table 3 shows the efficient method’s wall-clock time. The brute-
force method is faster for small 𝑛 due to lower overhead, but be-
comes intractable for 𝑛 > 6 due to 2𝑛-dimensional matrix opera-
tions.

3.5 Diagrammatic Rewrite System
The rewrite system contains 8 rules, 3 of which are conditional
on embedding structure. Without embeddings, diagrams simplify
in 1 step; with embeddings, 2 steps are required. The embedding
propagation rules (through 𝜇 and Δ) increase the node count from
4 to 6 nodes, reflecting the additional algebraic structure needed to
handle non-trivial embeddings.

4 CONCLUSION
Our computational investigation reveals that the primary obstacle
to a diagrammatic proof of efficient contraction is a sign convention

mismatch in the full supertrace contraction, yielding a systematic
factor of −1. Partial contraction is exact, and Pfaffian computa-
tion is validated to machine precision. The diagrammatic rewrite
system successfully captures the algebraic structure but requires
explicit sign tracking for the super (Z2-graded) case. These results
suggest that incorporating Koszul sign rules into the diagrammatic
framework would resolve the discrepancy and enable a complete
proof.

4.1 Limitations and Ethical Considerations
Experiments are limited to small algebra dimensions (𝑛 ≤ 8) due
to the 𝑂 (2𝑛) brute-force verification cost. The sign discrepancy
may arise from implementation-specific conventions rather than
fundamental algebraic obstacles. No ethical concerns arise from
this mathematical investigation.
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