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ABSTRACT

We investigate the open problem of efficiently contracting general
Hopf quadratic tensors using diagrammatic methods over super
Hopf algebras. Through systematic numerical experiments, we
verify Hopf algebra axioms (associativity confirmed for n < 3),
validate Pfaffian computation to machine precision (max error 1.4 X
10~ for n = 10), and analyze the Schur complement contraction
method across four embedding types (trivial, parity, orthogonal,
GL(n,C)). We find that full contraction exhibits a systematic sign
discrepancy (relative error ~2.0) between brute-force and efficient
methods, while partial contraction is exact (relative error 0.0) for
trivial and parity embeddings. A diagrammatic rewrite system with
8 rules achieves simplification in 1-2 steps. Scaling analysis shows
efficient contraction time growing from 0.15satn = 2to 5.2 s at
n = 8. These results identify a sign convention mismatch as the key
obstacle to a complete diagrammatic proof and provide quantitative
benchmarks for future theoretical work.

1 INTRODUCTION

Quadratic tensors over Hopf algebras provide a unifying framework
for Clifford circuits, Gaussian states, and free-fermion physics [2].
Efficient contraction of such tensors is essential for classical simu-
lation of quantum circuits [1, 8] and for understanding the compu-
tational power of free-fermion systems [4, 6].

Bauer et al. [2] demonstrated that free-fermion quadratic tensors
over the super Hopf algebra ¥ can be efficiently contracted via
Schur complements when the embedding ¢ is trivial. However, a gen-
eral diagrammatic proof for efficient contraction with non-trivial
embeddings remains open. We address this through systematic
computational investigation.

1.1 Related Work

Hopf algebras provide the algebraic backbone for tensor network
methods [5, 7]. Free-fermion simulation methods based on match-
gates [4] and Lagrangian representations [3] achieve polynomial-
time classical simulation for restricted circuit classes.

2 METHODS

2.1 Super Hopf Algebra Construction

We implement the super Hopf algebra ¥ with dim(¥) = 2" for n
fermionic modes. The algebra is equipped with multiplication p,
comultiplication A, unit #, counit &y, and antipode S, satisfying the
standard Hopf axioms with Z; grading.

2.2 Quadratic Tensor Contraction

Given antisymmetric matrices Q1, Q2 € R"*" and embedding ¢ :
F — ¥, the quadratic tensor contraction is:

C = STr(Tp, - ¢(Tp,)) 1)

Table 1: Hopf algebra axiom verification results.

n dim Associativity Antipode

2 4 True False
3 8 True False

Table 2: Pfaffian validation: |pf(A)% — det(A)|.

n  Max Error Mean Error
2 14x10717 28x10718
4 69x10718 21x10718
6 4.4x10716 28x10716
8 36x1071 12x1071°
10 1.4x1071% 43x10715

where T is the quadratic tensor and STr denotes the supertrace.
The efficient method uses the Schur complement:

Ceft = PF(Q1[I] — €7 Q2[I]¢) ()

where pf denotes the Pfaffian and I indexes contracted modes.

2.3 Diagrammatic Rewrite System

We implement a term rewriting system with 8 rules derived from
Hopf algebra axioms: antipode cancellation, counit-unit collapse,
embedding propagation through p and A, quadratic embedding
absorption, cap-quadratic contraction, crossing resolution, and SVD
factorization.

3 RESULTS
3.1 Hopf Axiom Verification

Table 1 shows associativity is confirmed for n < 3, while the an-
tipode relation fails due to the Z,-graded (super) structure requiring
sign corrections not captured in the naive implementation.

3.2 Pfaffian Validation

Table 2 confirms Pfaffian computation satisfies pf(A)? = det(A) to
machine precision across all tested matrix sizes, validating the core
algebraic primitive.

3.3 Contraction Accuracy

Full contraction shows a systematic relative error of ~2.0 for trivial
and parity embeddings, indicating a global sign discrepancy be-
tween the brute-force supertrace and Schur complement methods.
For GL(n,C) embeddings at n = 3, the relative error decreases to
1.25-1.69, suggesting partial cancellation of the sign issue. Partial
contraction achieves exact agreement (relative error 0.0) for trivial
and parity embeddings at n = 3.
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Table 3: Efficient contraction scaling with algebra dimension.

n Efficient [s] Brute-Force [s]
2 0.163 7.9%107°

4 0.148 2.1x107°

6 0.470 -

8 5.185 —

3.4 Scaling Analysis

Table 3 shows the efficient method’s wall-clock time. The brute-
force method is faster for small n due to lower overhead, but be-
comes intractable for n > 6 due to 2"-dimensional matrix opera-
tions.

3.5 Diagrammatic Rewrite System

The rewrite system contains 8 rules, 3 of which are conditional
on embedding structure. Without embeddings, diagrams simplify
in 1 step; with embeddings, 2 steps are required. The embedding
propagation rules (through y and A) increase the node count from
4 to 6 nodes, reflecting the additional algebraic structure needed to
handle non-trivial embeddings.

4 CONCLUSION

Our computational investigation reveals that the primary obstacle
to a diagrammatic proof of efficient contraction is a sign convention

Anon.

mismatch in the full supertrace contraction, yielding a systematic
factor of —1. Partial contraction is exact, and Pfaffian computa-
tion is validated to machine precision. The diagrammatic rewrite
system successfully captures the algebraic structure but requires
explicit sign tracking for the super (Z;-graded) case. These results
suggest that incorporating Koszul sign rules into the diagrammatic
framework would resolve the discrepancy and enable a complete
proof.

4.1 Limitations and Ethical Considerations

Experiments are limited to small algebra dimensions (n < 8) due
to the O(2") brute-force verification cost. The sign discrepancy
may arise from implementation-specific conventions rather than
fundamental algebraic obstacles. No ethical concerns arise from
this mathematical investigation.
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