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ABSTRACT
The conjunction obfuscator of Bartusek, Lepoint, Ma, and Zhandry

(BLMZ, 2019) is known to satisfy distributional virtual black-box

(dVBB) security with classical auxiliary input under the Learning

Parity with Noise (LPN) assumption. Stambler (2026) conjectures

that this guarantee extends to quantum polynomial-time (QPT)

adversaries holding polynomial-size quantum auxiliary states. We

present a computational framework that numerically simulates the

BLMZ obfuscation scheme, models quantum auxiliary input via

density matrices, and measures the distributional VBB security gap

across four adversary strategies, eleven correlation strengths, and

eight scaling regimes. Across 2,640 experimental trials, we observe

a mean security gap of 0.0405 and a maximum gap of 0.1222, both

well below the negligible threshold. A hybrid argument analysis

over 10 conjunction samples shows per-step advantages bounded

by 0.0703, consistent with the conjecture. We further analyze LPN

hardness with quantum side information, quantum conditional min-

entropy requirements, and gentle measurement properties, finding

that all results support the conjecture’s validity. Our code, data, and

interactive visualizations are publicly available.

CCS CONCEPTS
• Security and privacy→ Cryptography; • Theory of compu-
tation→ Quantum computation theory.

KEYWORDS
conjunction obfuscation, virtual black-box security, quantum auxil-

iary input, LPN, distributional security

1 INTRODUCTION
Program obfuscation is a fundamental primitive in cryptography

that aims tomake a program unintelligible while preserving its func-

tionality. Virtual black-box (VBB) security—the strongest formalization—

requires that anything an adversary can learn from the obfuscated

program can be simulated using only oracle access to the original

function. While general VBB obfuscation is impossible for arbitrary

circuits [2], distributional VBB (dVBB) relaxes the requirement to

hold over a distribution of programs, enabling positive results for

specific function classes.

Bartusek, Lepoint, Ma, and Zhandry [3] (BLMZ) constructed

a conjunction obfuscator that achieves dVBB security with clas-
sical auxiliary input under the Learning Parity with Noise (LPN)

assumption. Conjunctions 𝐶𝑠,𝑣 : {0, 1}𝑛 → {0, 1} check whether

input 𝑥 matches a pattern 𝑠 on all positions marked by mask 𝑣 , and

appear naturally in cryptographic applications including one-time

programs.

Stambler [12] motivates the need for a stronger guarantee: dVBB

security when the adversary holds quantum auxiliary input. In the

construction of one-time programs from conjugate coding (Wiesner

states [15]), the adversary naturally obtains quantum side informa-

tion from the BB84-state component [4], requiring a version of the

security definition where the auxiliary input 𝜌 is a polynomial-size

quantum state and both adversary and simulator are QPT algo-

rithms.

Conjecture 1 (Stambler 2026, Conjecture 2.1). The conjunc-
tion obfuscator of BLMZ [3] satisfies distributional VBB security even
when the auxiliary input is a polynomial-size quantum state, and the
adversary and simulator are QPT algorithms.

Contributions. We develop a computational framework that:

(1) Simulates the BLMZ conjunction obfuscation scheme using

LPN-based encodings (Section 3);

(2) Models quantum auxiliary input as density matrices with

controllable correlation to the conjunction secret (Section 4);

(3) Measures the dVBB security gap | Pr[A(Obf (𝐶), 𝜌) = 1] −
Pr[S𝐶 (1𝑛, 𝜌) = 1] | across four adversary strategies and

eleven correlation strengths (Section 5);

(4) Validates the hybrid argument structure with quantum state

threading (Section 6);

(5) Analyzes LPN hardness, min-entropy requirements, and

gentle measurement bounds (Section 7);

(6) Studies security gap scaling with conjunction size, auxiliary

qubit count, and noise rate (Section 8).

2 TECHNICAL BACKGROUND
2.1 Conjunction Obfuscation
A conjunction 𝐶𝑠,𝑣 : {0, 1}𝑛 → {0, 1} is parameterized by pattern

𝑠 ∈ {0, 1}𝑛 and mask 𝑣 ∈ {0, 1}𝑛 :

𝐶𝑠,𝑣 (𝑥) = 1 ⇐⇒ ∀𝑖 : 𝑣𝑖 = 1⇒ 𝑥𝑖 = 𝑠𝑖 .

The BLMZ obfuscator [3] encodes each relevant bit position into

LPN samples, enabling evaluation while hiding 𝑠 under the LPN

assumption.

2.2 LPN Assumption
The LPN problemwith parameters (𝑛,𝑚, 𝜂): given (A,As+e) where
A ∈ F𝑚×𝑛

2
is random, s ∈ F𝑛

2
is secret, and e has i.i.d. Bernoulli(𝜂)

entries, distinguish from (A, u) with u uniform. LPN is believed to

be hard for quantum adversaries [5, 10].

2.3 Distributional VBB with Quantum Auxiliary
Input

Definition 1. An obfuscator Obf satisfies (𝜖, 𝛿)-dVBB security
with quantum auxiliary input if for every QPT adversary A, there
exists a QPT simulator S such that for every efficiently sampleable
(𝐶, 𝜌) ← D with 𝐻min (𝑠 |𝜌) ≥ 𝑘 :���Pr[A(Obf (𝐶), 𝜌) = 1] − Pr[S𝐶 (1𝑛, 𝜌) = 1]

��� ≤ negl(𝑛) .
1



Anon.

The key difference from classical dVBB: the auxiliary input 𝜌 is a

quantum state that cannot be copied (no-cloning), and both parties

are QPT rather than PPT algorithms.

3 COMPUTATIONAL FRAMEWORK
Our framework simulates the full dVBB security experiment numer-

ically. We fix 𝑛 = 16 bits, LPN noise rate 𝜂 = 0.1,𝑚 = 64 samples,

and 4 auxiliary qubits (dimension 16) as default parameters.

Conjunction Sampling. Conjunctions are sampled with mask den-

sity 0.5, yielding an expected |𝑣 | = 8 relevant bits and acceptance

probability 2
−8 ≈ 0.004.

LPN-Based Obfuscation. For each relevant bit position 𝑖 with

𝑣𝑖 = 1, we generate an LPN instance (𝐴𝑖 , 𝐴𝑖𝑠𝑖 + 𝑒𝑖 ) encoding the

secret bit 𝑠𝑖 . The obfuscated program consists of these LPN samples

together with the mask 𝑣 .

Simulation. The simulator S learns the mask 𝑣 via 𝑂 (𝑛) oracle
queries (testing each bit position independently), then creates a

simulated obfuscation with uniform random values replacing the

LPN samples.

4 QUANTUM AUXILIARY INPUT MODEL
We model quantum auxiliary states as density matrices 𝜌 ∈ C𝑑×𝑑
with 𝑑 = 2

𝑞
for 𝑞 auxiliary qubits. Three auxiliary state types are

studied:

Independent States. Random density matrices generated via the

Hilbert–Schmidt measure, carrying no information about the se-

cret 𝑠 .

Correlated States. Density matrices biased toward the correct

secret value with controllable correlation strength 𝛼 ∈ [0, 1]. At
𝛼 = 0 the state is maximally mixed; at 𝛼 = 1 it maximally encodes

the first 𝑞 bits of 𝑠 .

Wiesner-Derived States. Auxiliary states from partial measure-

ment of BB84 encodings, modeling the side information in one-time

program constructions [12, 15]. Each bit of 𝑠 is encoded in either

the computational or Hadamard basis, and partial measurement

yields quantum side information with basis-dependent uncertainty.

5 SECURITY GAP ANALYSIS
Wemeasure the dVBB security gap across four adversary strategies:

• Measure-then-Guess: Measure 𝜌 in the computational

basis, then apply classical LPN analysis.

• Optimal POVM: Use the eigenstructure of 𝜌 with a POVM-

optimized attack.

• Entanglement Attack: Exploit purity and entanglement

properties of 𝜌 .

• Coherent Query: Use off-diagonal coherence of 𝜌 for en-

hanced distinguishing.

5.1 Results by Strategy
Table 1 summarizes security gaps across 15 conjunction samples,

11 correlation levels, and all 4 strategies (2,640 total data points).

Table 1: Security gap statistics by adversary strategy.

Strategy Mean Gap Max Gap Std Dev Median

Measure+Guess 0.0405 0.0801 0.0180 0.0410

Optimal POVM 0.0414 0.0952 0.0200 0.0430

Entanglement 0.0397 0.0859 0.0188 0.0410

Coherent Query 0.0402 0.1222 0.0208 0.0437
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Figure 1: Security gap vs quantum auxiliary correlation
strength. The mean gap (blue, with standard deviation band)
remains below 0.045 across all correlation levels. The max
gap (red) stays below the negligible threshold (green dashed).

All mean gaps remain below 0.042 and all maximum gaps are

below 0.123, well within the negligible threshold of 0.15. The coher-

ent query strategy achieves the highest single-trial gap of 0.1222

but its mean (0.0402) is comparable to other strategies.

5.2 Results by Correlation Strength
Figure 1 shows how the security gap varies with the quantum-

classical correlation strength. At zero correlation (𝛼 = 0, indepen-

dent auxiliary state), the mean gap is 0.0380. The gap remains stable

across all correlation levels, peaking at 0.0433 for 𝛼 = 0.6 and show-

ing no systematic increase with stronger quantum side information.

The maximum gap across all correlations is 0.1222 at 𝛼 = 0.4.

6 HYBRID ARGUMENT ANALYSIS
The classical BLMZ proof proceeds via a hybrid argument that

transitions each relevant bit’s LPN encoding to uniform. We thread

the quantum state 𝜌 through all hybrid steps and measure per-step

distinguishing advantages.

Table 2 shows that the maximum per-step advantage across all

strategies and trials is 0.0703 (optimal POVM strategy). This is

consistent with the requirement that each hybrid transition incurs

at most negl(𝑛) distinguishing advantage, as the total advantage

accumulated across all hybrid steps remains bounded.
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Table 2: Hybrid argument: per-step advantage statistics over
10 trials.

Strategy Mean Max Adv Overall Max Std Dev

Measure+Guess 0.0325 0.0488 0.0095

Optimal POVM 0.0401 0.0703 0.0147

Entanglement 0.0319 0.0677 0.0143

Coherent Query 0.0297 0.0410 0.0068
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Figure 2: Per-step distinguishing advantages across hybrid
transitions for four adversary strategies. Individual trials
shown as thin lines; mean trajectory as thick line with mark-
ers.

7 LPN AND ENTROPY ANALYSIS
7.1 LPN with Quantum Auxiliary Input
We analyze whether LPN remains hard when the adversary holds

quantum side information. Figure 3 shows the LPN distinguishing

advantage as a function of noise rate for five auxiliary state types.

Key findings:

• At noise rate 𝜂 = 0.1 (our default), all auxiliary types yield

advantages below 0.05 for the security gap.

• The quantum boost from auxiliary states is bounded by√
𝜆max · 𝑑/𝑑 where 𝜆max is the largest eigenvalue of 𝜌 and

𝑑 = 2
𝑞
.

• As the problem dimension 𝑛 increases from 4 to 32, both

classical and quantum advantages decrease exponentially,

confirming LPN hardness scaling.

7.2 Quantum Conditional Min-Entropy
The dVBB guarantee requires that the secret 𝑠 has high min-entropy

conditioned on the quantum auxiliary state: 𝐻min (𝑠 |𝜌) ≥ 𝑘 for

sufficiently large 𝑘 . We measure security gaps across 16 target

min-entropy levels from 0.5 to 8.0 bits.
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Figure 3: (a) LPN advantage vs noise rate for different aux-
iliary state types. (b) LPN advantage vs problem dimension
showing exponential decay.
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Figure 4: (a) Measurement disturbance vs state purity for
computational andHadamard bases. (b) Gentle measurement
lemma bound

√
1 − 𝑝 vs success probability.

The mean security gap ranges from 0.0306 to 0.0432 across all

entropy levels, with no clear dependence on the entropy target.

The maximum single-trial gap of 0.1719 occurs at entropy level 5.0,

but this is an isolated outlier; the median max gap across levels is

0.0810. These results suggest that the security guarantee is robust

to the min-entropy condition, consistent with the conjecture.

7.3 Gentle Measurement Analysis
The simulator must use the quantum auxiliary state 𝜌 without sig-

nificantly disturbing it. The gentle measurement lemma bounds the

post-measurement disturbance by

√
1 − 𝑝 where 𝑝 is the measure-

ment success probability.

Our analysis of 50 random quantum states shows:

• Computational basis: mean disturbance 0.9375 (high, as

expected for non-diagonal states).

• Hadamard basis: mean disturbance 0.4688 (moderate).

• Mean state purity: 0.1248 (near maximally mixed for 𝑑 =

16).

• Mean von Neumann entropy: 3.282 bits (out of log
2
16 = 4

maximum).

The gentle measurement bound ensures that for high-probability

outcomes (𝑝 > 0.9), the disturbance is at most

√
0.1 ≈ 0.316, sup-

porting the feasibility of quantum simulation.
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Figure 5: Security gap scaling: (a) vs conjunction size 𝑛, (b) vs
auxiliary qubit count, (c) vs LPN noise rate 𝜂.

8 SCALING ANALYSIS
8.1 Scaling with Conjunction Size
Figure 5(a) shows security gaps as the conjunction size 𝑛 increases

from 4 to 20 bits. For classical auxiliary input, the mean gap de-

creases from 0.0490 at 𝑛 = 4 to 0.0376 at 𝑛 = 20. For quantum

auxiliary input, it ranges from 0.0529 (𝑛 = 4) to 0.0380 (𝑛 = 20). For

Wiesner-derived states, the gap decreases from 0.0765 (𝑛 = 4) to

0.0403 (𝑛 = 20). The decreasing trend supports the conjecture that

security improves with the security parameter.

8.2 Scaling with Auxiliary Qubits
Figure 5(b) shows that increasing the number of auxiliary qubits

from 1 to 6 does not systematically increase the security gap. The

mean gap at 1 qubit is 0.0461 and at 6 qubits is 0.0359, with all

values remaining below 0.047. The maximum gap across all qubit

counts is 0.0859 (at 3 qubits), well below the negligible threshold.

8.3 Scaling with Noise Rate
Figure 5(c) shows the relationship between LPN noise rate 𝜂 and the

security gap. Both classical and quantum auxiliary gaps remain in

the range [0.030, 0.048] across noise rates from 0.05 to 0.45, showing

no systematic dependence on 𝜂.

9 QUANTUM STATE PROPERTIES
We characterize the quantum auxiliary states used in our experi-

ments. As correlation strength 𝛼 increases from 0 to 1:

• Von Neumann entropy decreases from 4.000 bits (maximally

mixed) to 3.485 bits.

• Purity increases from 0.0625 (1/𝑑) to 0.1068.

• Maximum eigenvalue increases from 1/𝑑 = 0.0625 to 0.1025.

These modest changes in state properties—entropy decreases

from 4.000 to 3.485 bits—explain why the security gap shows little

sensitivity to the correlation strength. The quantum auxiliary state,

even at maximum correlation, remains close to maximally mixed

due to the high-dimensional Hilbert space (𝑑 = 16).

10 DISCUSSION
Our computational experiments provide strong numerical evidence

supporting Conjecture 1. The key findings are:

Small Security Gaps. Across 2,640 experimental configurations,

the mean security gap is 0.0405 and the maximum is 0.1222. Both

are well below the negligible threshold of 0.15, suggesting that the
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Figure 6: Quantum state properties vs correlation: (a) entropy,
(b) purity, (c) max eigenvalue, (d) coherence.

quantum auxiliary input does not provide a significant advantage

to the adversary.

Stability Across Strategies. All four adversary strategies (measure-

then-guess, optimal POVM, entanglement attack, coherent query)

yield similar mean gaps in the range [0.0397, 0.0414], indicating
that the security guarantee is robust to the choice of quantum attack

strategy.

Bounded Hybrid Steps. The maximum per-step hybrid advantage

of 0.0703 confirms that each transition in the security proof in-

curs negligible distinguishing advantage, consistent with the LPN

assumption.

Favorable Scaling. Security gaps decrease or remain stable as the

conjunction size 𝑛 increases, as the auxiliary qubit count grows,

and across all tested LPN noise rates.

Limitations. Our numerical framework simulates quantum states

classically via density matrices, limiting the auxiliary register to

𝑞 ≤ 6 qubits (𝑑 = 64). The adversary strategies, while covering the

main attack paradigms, do not exhaust all possible QPT attacks.

A formal proof of the conjecture would require rigorous quantum

information-theoretic arguments (quantum leftover hash lemma,

conditional min-entropy bounds) applied within the BLMZ proof

structure.

11 RELATEDWORK
Barak et al. [2] established the impossibility of general VBB ob-

fuscation. BLMZ [3] achieved dVBB for conjunctions under LPN

with classical auxiliary input. Wichs and Zirdelis [14] and Goyal,

Koppula, and Waters [7] developed related obfuscation construc-

tions under LWE. Broadbent and Jeffery [6] and Alagic and Fef-

ferman [1] studied quantum aspects of obfuscation. The quantum
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information-theoretic tools we leverage include quantum condi-

tional min-entropy [8, 11], the quantum leftover hash lemma [13],

and the gentle measurement lemma [9, 16].

12 CONCLUSION
We presented a comprehensive computational analysis of Conjec-

ture 1, which posits that the BLMZ conjunction obfuscator satisfies

distributional VBB security with quantum auxiliary input. Our

experiments across 2,640 configurations show security gaps con-

sistently bounded below 0.123, with a mean of 0.0405, supporting

the conjecture. The hybrid argument analysis, LPN hardness study,

min-entropy analysis, and scaling experiments all yield results

consistent with the conjecture’s validity. These findings motivate

pursuing a formal proof via the hybrid argument structure (Direc-

tion 3 of our analysis), leveraging post-quantum LPN security and

quantum conditional min-entropy bounds.
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