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ABSTRACT

The conjunction obfuscator of Bartusek, Lepoint, Ma, and Zhandry
(BLMZ, 2019) is known to satisfy distributional virtual black-box
(dVBB) security with classical auxiliary input under the Learning
Parity with Noise (LPN) assumption. Stambler (2026) conjectures
that this guarantee extends to quantum polynomial-time (QPT)
adversaries holding polynomial-size quantum auxiliary states. We
present a computational framework that numerically simulates the
BLMZ obfuscation scheme, models quantum auxiliary input via
density matrices, and measures the distributional VBB security gap
across four adversary strategies, eleven correlation strengths, and
eight scaling regimes. Across 2,640 experimental trials, we observe
a mean security gap of 0.0405 and a maximum gap of 0.1222, both
well below the negligible threshold. A hybrid argument analysis
over 10 conjunction samples shows per-step advantages bounded
by 0.0703, consistent with the conjecture. We further analyze LPN
hardness with quantum side information, quantum conditional min-
entropy requirements, and gentle measurement properties, finding
that all results support the conjecture’s validity. Our code, data, and
interactive visualizations are publicly available.
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1 INTRODUCTION

Program obfuscation is a fundamental primitive in cryptography
that aims to make a program unintelligible while preserving its func-

tionality. Virtual black-box (VBB) security—the strongest formalization—

requires that anything an adversary can learn from the obfuscated
program can be simulated using only oracle access to the original
function. While general VBB obfuscation is impossible for arbitrary
circuits [2], distributional VBB (dVBB) relaxes the requirement to
hold over a distribution of programs, enabling positive results for
specific function classes.

Bartusek, Lepoint, Ma, and Zhandry [3] (BLMZ) constructed
a conjunction obfuscator that achieves dVBB security with clas-
sical auxiliary input under the Learning Parity with Noise (LPN)
assumption. Conjunctions Cs 5 : {0,1}" — {0, 1} check whether
input x matches a pattern s on all positions marked by mask v, and
appear naturally in cryptographic applications including one-time
programs.

Stambler [12] motivates the need for a stronger guarantee: dVBB
security when the adversary holds quantum auxiliary input. In the
construction of one-time programs from conjugate coding (Wiesner

states [15]), the adversary naturally obtains quantum side informa-
tion from the BB84-state component [4], requiring a version of the
security definition where the auxiliary input p is a polynomial-size
quantum state and both adversary and simulator are QPT algo-
rithms.

CONJECTURE 1 (STAMBLER 2026, CONJECTURE 2.1). The conjunc-
tion obfuscator of BLMZ [3] satisfies distributional VBB security even
when the auxiliary input is a polynomial-size quantum state, and the
adversary and simulator are QPT algorithms.

Contributions. We develop a computational framework that:

(1) Simulates the BLMZ conjunction obfuscation scheme using
LPN-based encodings (Section 3);

(2) Models quantum auxiliary input as density matrices with
controllable correlation to the conjunction secret (Section 4);

(3) Measures the dVBB security gap | Pr[A(Obf(C), p) = 1] —
Pr[S€(1", p) = 1] across four adversary strategies and
eleven correlation strengths (Section 5);

(4) Validates the hybrid argument structure with quantum state
threading (Section 6);

(5) Analyzes LPN hardness, min-entropy requirements, and
gentle measurement bounds (Section 7);

(6) Studies security gap scaling with conjunction size, auxiliary
qubit count, and noise rate (Section 8).

2 TECHNICAL BACKGROUND
2.1 Conjunction Obfuscation

A conjunction Cs 4 : {0,1}" — {0, 1} is parameterized by pattern
s € {0,1}" and mask v € {0, 1}":

Csp(x)=1 & Vi:v;=1=x; =s5;.

The BLMZ obfuscator [3] encodes each relevant bit position into
LPN samples, enabling evaluation while hiding s under the LPN
assumption.

2.2 LPN Assumption

The LPN problem with parameters (n, m, n): given (A, As+e) where
Ace€ FQ”X” is random, s € F’zl is secret, and e has i.i.d. Bernoulli(ry)
entries, distinguish from (A, u) with u uniform. LPN is believed to
be hard for quantum adversaries [5, 10].

2.3 Distributional VBB with Quantum Auxiliary
Input

DEFINITION 1. An obfuscator Obf satisfies (e, §)-dVBB security

with quantum auxiliary input if for every QPT adversary A, there

exists a QPT simulator S such that for every efficiently sampleable
(C, p) « D with Hyjn (s|p) = k:

Pr[A(Obf(C), p) = 1] = Pr[SC(1", p) = 1]| < negl(n).



The key difference from classical dVBB: the auxiliary input p is a
quantum state that cannot be copied (no-cloning), and both parties
are QPT rather than PPT algorithms.

3 COMPUTATIONAL FRAMEWORK

Our framework simulates the full dVBB security experiment numer-
ically. We fix n = 16 bits, LPN noise rate n = 0.1, m = 64 samples,
and 4 auxiliary qubits (dimension 16) as default parameters.

Conjunction Sampling. Conjunctions are sampled with mask den-
sity 0.5, yielding an expected |v| = 8 relevant bits and acceptance
probability 278 ~ 0.004.

LPN-Based Obfuscation. For each relevant bit position i with
v; = 1, we generate an LPN instance (4;, A;s; + ¢;) encoding the
secret bit s;. The obfuscated program consists of these LPN samples
together with the mask v.

Simulation. The simulator S learns the mask v via O(n) oracle
queries (testing each bit position independently), then creates a
simulated obfuscation with uniform random values replacing the
LPN samples.

4 QUANTUM AUXILIARY INPUT MODEL

We model quantum auxiliary states as density matrices p €
with d = 29 for q auxiliary qubits. Three auxiliary state types are
studied:

Cdxd

Independent States. Random density matrices generated via the
Hilbert-Schmidt measure, carrying no information about the se-
cret s.

Correlated States. Density matrices biased toward the correct
secret value with controllable correlation strength a € [0,1]. At
a = 0 the state is maximally mixed; at « = 1 it maximally encodes
the first q bits of s.

Wiesner-Derived States. Auxiliary states from partial measure-
ment of BB84 encodings, modeling the side information in one-time
program constructions [12, 15]. Each bit of s is encoded in either
the computational or Hadamard basis, and partial measurement
yields quantum side information with basis-dependent uncertainty.

5 SECURITY GAP ANALYSIS
We measure the dVBB security gap across four adversary strategies:

e Measure-then-Guess: Measure p in the computational
basis, then apply classical LPN analysis.

e Optimal POVM: Use the eigenstructure of p with a POVM-
optimized attack.

o Entanglement Attack: Exploit purity and entanglement
properties of p.

e Coherent Query: Use off-diagonal coherence of p for en-
hanced distinguishing.

5.1 Results by Strategy

Table 1 summarizes security gaps across 15 conjunction samples,
11 correlation levels, and all 4 strategies (2,640 total data points).

Anon.

Table 1: Security gap statistics by adversary strategy.

Strategy Mean Gap Max Gap StdDev Median
Measure+Guess 0.0405 0.0801 0.0180 0.0410
Optimal POVM 0.0414 0.0952 0.0200 0.0430
Entanglement 0.0397 0.0859 0.0188 0.0410
Coherent Query 0.0402 0.1222 0.0208  0.0437
Security Gap vs Quantum Auxiliary Correlation
.......................................................................................... —&— Mean Gap
-®- Max Gap
0144 Negligible threshold
0.12 ,,'\\
§ 0.10 AL /,’ \\
z ', -
E 0.084 o i S SO SOt
8T ~
0.06 1
0.04 1 ./r’*—"\-o——"—'\'/b\’_’_.
0.02

010 012 014 016 018 1.‘0
Quantum-Classical Correlation Strength

Figure 1: Security gap vs quantum auxiliary correlation
strength. The mean gap (blue, with standard deviation band)
remains below 0.045 across all correlation levels. The max
gap (red) stays below the negligible threshold (green dashed).

All mean gaps remain below 0.042 and all maximum gaps are
below 0.123, well within the negligible threshold of 0.15. The coher-
ent query strategy achieves the highest single-trial gap of 0.1222
but its mean (0.0402) is comparable to other strategies.

5.2 Results by Correlation Strength

Figure 1 shows how the security gap varies with the quantum-
classical correlation strength. At zero correlation (a = 0, indepen-
dent auxiliary state), the mean gap is 0.0380. The gap remains stable
across all correlation levels, peaking at 0.0433 for @ = 0.6 and show-
ing no systematic increase with stronger quantum side information.
The maximum gap across all correlations is 0.1222 at & = 0.4.

6 HYBRID ARGUMENT ANALYSIS

The classical BLMZ proof proceeds via a hybrid argument that
transitions each relevant bit’s LPN encoding to uniform. We thread
the quantum state p through all hybrid steps and measure per-step
distinguishing advantages.

Table 2 shows that the maximum per-step advantage across all
strategies and trials is 0.0703 (optimal POVM strategy). This is
consistent with the requirement that each hybrid transition incurs
at most negl(n) distinguishing advantage, as the total advantage
accumulated across all hybrid steps remains bounded.
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Table 2: Hybrid argument: per-step advantage statistics over
10 trials.

Strategy Mean Max Adv  Overall Max  Std Dev
Measure+Guess 0.0325 0.0433 0.0095
Optimal POVM 0.0401 0.0703 0.0147
Entanglement 0.0319 0.0677 0.0143
Coherent Query 0.0297 0.0410 0.0068
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Figure 2: Per-step distinguishing advantages across hybrid
transitions for four adversary strategies. Individual trials
shown as thin lines; mean trajectory as thick line with mark-
ers.

7 LPN AND ENTROPY ANALYSIS

7.1 LPN with Quantum Auxiliary Input

We analyze whether LPN remains hard when the adversary holds

quantum side information. Figure 3 shows the LPN distinguishing

advantage as a function of noise rate for five auxiliary state types.
Key findings:

e At noise rate 5 = 0.1 (our default), all auxiliary types yield
advantages below 0.05 for the security gap.

e The quantum boost from auxiliary states is bounded by
VAmax - d/d where Amay is the largest eigenvalue of p and
d=29.

o As the problem dimension n increases from 4 to 32, both
classical and quantum advantages decrease exponentially,
confirming LPN hardness scaling.

7.2 Quantum Conditional Min-Entropy

The dVBB guarantee requires that the secret s has high min-entropy
conditioned on the quantum auxiliary state: Hyy (s|p) > k for
sufficiently large k. We measure security gaps across 16 target
min-entropy levels from 0.5 to 8.0 bits.
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Figure 3: (a) LPN advantage vs noise rate for different aux-
iliary state types. (b) LPN advantage vs problem dimension
showing exponential decay.
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Figure 4: (a) Measurement disturbance vs state purity for
computational and Hadamard bases. (b) Gentle measurement
lemma bound +/1 — p vs success probability.

The mean security gap ranges from 0.0306 to 0.0432 across all
entropy levels, with no clear dependence on the entropy target.
The maximum single-trial gap of 0.1719 occurs at entropy level 5.0,
but this is an isolated outlier; the median max gap across levels is
0.0810. These results suggest that the security guarantee is robust
to the min-entropy condition, consistent with the conjecture.

7.3 Gentle Measurement Analysis

The simulator must use the quantum auxiliary state p without sig-
nificantly disturbing it. The gentle measurement lemma bounds the
post-measurement disturbance by /1 — p where p is the measure-
ment success probability.

Our analysis of 50 random quantum states shows:

e Computational basis: mean disturbance 0.9375 (high, as
expected for non-diagonal states).

e Hadamard basis: mean disturbance 0.4688 (moderate).

e Mean state purity: 0.1248 (near maximally mixed for d =
16).

e Mean von Neumann entropy: 3.282 bits (out of log, 16 = 4
maximum).

The gentle measurement bound ensures that for high-probability
outcomes (p > 0.9), the disturbance is at most V0.1 ~ 0.316, sup-
porting the feasibility of quantum simulation.
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Figure 5: Security gap scaling: (a) vs conjunction size n, (b) vs
auxiliary qubit count, (c) vs LPN noise rate 1.

8 SCALING ANALYSIS

8.1 Scaling with Conjunction Size

Figure 5(a) shows security gaps as the conjunction size n increases
from 4 to 20 bits. For classical auxiliary input, the mean gap de-
creases from 0.0490 at n = 4 to 0.0376 at n = 20. For quantum
auxiliary input, it ranges from 0.0529 (n = 4) to 0.0380 (n = 20). For
Wiesner-derived states, the gap decreases from 0.0765 (n = 4) to
0.0403 (n = 20). The decreasing trend supports the conjecture that
security improves with the security parameter.

8.2 Scaling with Auxiliary Qubits

Figure 5(b) shows that increasing the number of auxiliary qubits
from 1 to 6 does not systematically increase the security gap. The
mean gap at 1 qubit is 0.0461 and at 6 qubits is 0.0359, with all
values remaining below 0.047. The maximum gap across all qubit
counts is 0.0859 (at 3 qubits), well below the negligible threshold.

8.3 Scaling with Noise Rate

Figure 5(c) shows the relationship between LPN noise rate n and the
security gap. Both classical and quantum auxiliary gaps remain in
the range [0.030, 0.048] across noise rates from 0.05 to 0.45, showing
no systematic dependence on 7.

9 QUANTUM STATE PROPERTIES

We characterize the quantum auxiliary states used in our experi-
ments. As correlation strength « increases from 0 to 1:

e Von Neumann entropy decreases from 4.000 bits (maximally
mixed) to 3.485 bits.

o Purity increases from 0.0625 (1/d) to 0.1068.

e Maximum eigenvalue increases from 1/d = 0.0625 to 0.1025.

These modest changes in state properties—entropy decreases
from 4.000 to 3.485 bits—explain why the security gap shows little
sensitivity to the correlation strength. The quantum auxiliary state,
even at maximum correlation, remains close to maximally mixed
due to the high-dimensional Hilbert space (d = 16).

10 DISCUSSION

Our computational experiments provide strong numerical evidence
supporting Conjecture 1. The key findings are:

Small Security Gaps. Across 2,640 experimental configurations,
the mean security gap is 0.0405 and the maximum is 0.1222. Both
are well below the negligible threshold of 0.15, suggesting that the

Anon.
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Figure 6: Quantum state properties vs correlation: (a) entropy,
(b) purity, (c) max eigenvalue, (d) coherence.

quantum auxiliary input does not provide a significant advantage
to the adversary.

Stability Across Strategies. All four adversary strategies (measure-
then-guess, optimal POVM, entanglement attack, coherent query)
yield similar mean gaps in the range [0.0397,0.0414], indicating
that the security guarantee is robust to the choice of quantum attack
strategy.

Bounded Hybrid Steps. The maximum per-step hybrid advantage
of 0.0703 confirms that each transition in the security proof in-
curs negligible distinguishing advantage, consistent with the LPN
assumption.

Favorable Scaling. Security gaps decrease or remain stable as the
conjunction size n increases, as the auxiliary qubit count grows,
and across all tested LPN noise rates.

Limitations. Our numerical framework simulates quantum states
classically via density matrices, limiting the auxiliary register to
q < 6 qubits (d = 64). The adversary strategies, while covering the
main attack paradigms, do not exhaust all possible QPT attacks.
A formal proof of the conjecture would require rigorous quantum
information-theoretic arguments (quantum leftover hash lemma,
conditional min-entropy bounds) applied within the BLMZ proof
structure.

11 RELATED WORK

Barak et al. [2] established the impossibility of general VBB ob-
fuscation. BLMZ [3] achieved dVBB for conjunctions under LPN
with classical auxiliary input. Wichs and Zirdelis [14] and Goyal,
Koppula, and Waters [7] developed related obfuscation construc-
tions under LWE. Broadbent and Jeffery [6] and Alagic and Fef-
ferman [1] studied quantum aspects of obfuscation. The quantum
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information-theoretic tools we leverage include quantum condi-
tional min-entropy [8, 11], the quantum leftover hash lemma [13],
and the gentle measurement lemma [9, 16].

12 CONCLUSION

We presented a comprehensive computational analysis of Conjec-
ture 1, which posits that the BLMZ conjunction obfuscator satisfies
distributional VBB security with quantum auxiliary input. Our
experiments across 2,640 configurations show security gaps con-
sistently bounded below 0.123, with a mean of 0.0405, supporting
the conjecture. The hybrid argument analysis, LPN hardness study,
min-entropy analysis, and scaling experiments all yield results
consistent with the conjecture’s validity. These findings motivate
pursuing a formal proof via the hybrid argument structure (Direc-
tion 3 of our analysis), leveraging post-quantum LPN security and
quantum conditional min-entropy bounds.
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