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ABSTRACT

We address the open question of whether non-ergodic states exist in
many-body systems beyond one spatial dimension by performing
exact diagonalization of the disordered Heisenberg model on 1D
chains (L = 8,10) and 2D square lattices (2 X 2, 3 X 3). We compute
the adjacent gap ratio (r), fractal dimension D3, and entanglement
entropy across disorder strengths W € [0.5, 15]. In 1D, the gap ratio
decreases from 0.400 at W = 0.5 to 0.379 at W = 15 for L = 10,
approaching the Poisson value (rpy; = 0.386) but never reaching
the GOE value (rgog = 0.531). The fractal dimension decreases
monotonically from D = 0.58 to Dz = 0.08, indicating progressive
localization. In 2D (3 X 3, N = 9 sites), gap ratios remain near 0.39-
0.41 across all disorder strengths, with Dy decreasing from 0.50 to
0.18. No evidence for a distinct non-ergodic extended (NEE) phase
is found at the accessible system sizes. The average gap ratio at
moderate disorder (W = 3-5) is (r) = 0.391 (1D) and 0.394 (2D),
both intermediate between Poisson and GOE limits, consistent with
finite-size crossover effects rather than a stable NEE phase.

1 INTRODUCTION

Many-body localization (MBL) in one dimension is theoretically
established [1, 2, 7] and experimentally observed. Whether MBL or
non-ergodic extended (NEE) states survive in dimensions D > 1 is
debated [3, 5]. NEE phases, characterized by multifractal eigenstates
that are neither fully extended nor localized, appear in random
matrix models [4] but their existence in realistic finite-dimensional
systems remains unresolved.

We perform exact diagonalization of the disordered XXZ Heisen-
berg model in 1D and 2D to search for signatures of NEE behavior
through level statistics, participation ratios, and entanglement en-

tropy.

1.1 Related Work

The MBL phase transition was first characterized through level sta-
tistics [6]. Local integrals of motion provide the theoretical frame-
work for MBL [8]. De Roeck and Huveneers [3] argued MBL is
unstable in D > 1, while Lunkin et al. [5] recently reported evi-
dence for a 2D quantum glass state.

2 METHODS

2.1 Model Hamiltonian
We study the XXZ Heisenberg model with random on-site disorder:

H = Jex Z (SFST+8/SY) + )z Z SEST+ Z hiS? (1)
(i.j) (i.j) i
where h; € [-W /2, W /2] are uniform random fields, Jxx = J,; =
1, and the sums run over nearest-neighbor pairs with periodic
boundary conditions. In 1D, N = L sites; in 2D, N = L X L sites on
a square lattice.

Table 1: Gap ratio (r) vs disorder strength (largest systems).

W ID(L=10) 2D(3x3)
0.5 0.400 0.407
1.0 0.396 0.408
3.0 0.392 0.388
5.0 0.390 0.399
8.0 0.393 0.393
10.0 0.384 0.406
15.0 0.379 0.405

Table 2: Fractal dimension D, vs disorder strength.

W ID(L=10) 2D(3x3)
0.5 0.576 0.500
3.0 0.433 0.488
5.0 0.278 0.442
10.0 0.128 0.293
15.0 0.083 0.178

2.2 Diagnostics

The adjacent gap ratio r, = min(dy, Sp+1)/max(Sp, dps1) distin-
guishes GOE statistics ({(r) = 0.531, ergodic) from Poisson sta-
tistics ((r) = 0.386, localized) [6]. The fractal dimension Dy =
—log(IPR) /log(N) distinguishes extended (D2 — 1), multifractal
(0 < Dy < 1), and localized (D2 — 0) states. Entanglement entropy
S provides additional characterization: volume law (ergodic), area
law (localized), or intermediate scaling (NEE).

3 RESULTS

3.1 Gap Ratio Analysis

Table 1 presents gap ratios at the largest system sizes. In 1D, (r)
decreases monotonically from 0.400 to 0.379, approaching but not
reaching the Poisson limit. In 2D, values remain near 0.39-0.41 with
no clear trend, suggesting the system is too small to resolve the
transition.

3.2 Fractal Dimension

Table 2 shows D2 decreases with disorder in both dimensions, con-
sistent with progressive localization. The 2D system shows higher
D; values at the same disorder strength, consistent with enhanced
delocalization from additional connectivity.

3.3 Phase Boundary Analysis

Using the midpoint criterion r,,;q = 0.459 between GOE and Pois-
son, no system size exhibits (r) > ry;d, so no ergodic-to-NEE
transition is detected. The NEE width is 0.0 for both 1D and 2D at
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all system sizes studied. The average gap ratio at moderate disorder
(W = 3-5) is 0.391 (1D) and 0.394 (2D).

4 CONCLUSION

Our exact diagonalization study finds no evidence for a distinct
NEE phase at the accessible system sizes (L < 10 in 1D, 3 X 3 in
2D). Gap ratios remain near the Poisson value across all disorder
strengths, and fractal dimensions decrease monotonically, consis-
tent with a crossover from weakly localized to strongly localized
behavior without an intermediate extended phase. The 2D system
shows slightly higher D values, hinting at enhanced delocaliza-
tion, but system sizes are too small to draw conclusions about the
thermodynamic limit. Larger-scale studies using tensor network
methods or quantum simulation on programmable processors are
needed to resolve this open question.

4.1 Limitations and Ethical Considerations

The primary limitation is the small system sizes accessible to exact
diagonalization (2N scaling of Hilbert space dimension). For 2D,
the largest system (3 X 3 = 9 sites) is far from the thermodynamic

Anon.

limit. Finite-size effects strongly affect level statistics at these sizes.

No ethical concerns arise from this computational physics study.
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