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Computational Investigation of 𝑖-th Order Tensor Representations
for Non-Diagonal Clifford Hierarchy Operators
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ABSTRACT
The Clifford hierarchy is a nested sequence of unitary operator
groups fundamental to fault-tolerant quantum computation. Bauer
et al. recently showed that diagonal operators in the 𝑖-th level of
the Clifford hierarchy are precisely characterized by 𝑖-th order
tensors—specified by an 𝑖-th order function 𝑞 and an (𝑖−1)-th or-
der embedding 𝜀. Whether this tensor characterization extends to
non-diagonal operators remains an open question. We present a sys-
tematic computational investigation probing this question across
qudit dimensions 𝑑 ∈ {2, 3, 4, 5} and hierarchy levels 𝑖 ∈ {1, 2, 3}.
Our framework tests 351 operators spanning diagonal, monomial,
non-diagonal Clifford, and random unitary classes. We find a 1.0
diagonal verification rate confirming the known result, and observe
that all tested operators—including non-diagonal ones—admit gen-
eralized tensor representations when the framework is extended
beyond strict monomial (permutation-with-phases) forms. How-
ever, the monomial tensor fit residual for non-diagonal operators
is substantial (mean 1.051 for 𝑑=2, level 1), indicating that the di-
rect (𝑞, 𝜀) monomial parameterization does not extend to dense
unitaries. We identify a strong negative correlation (𝑟 = −0.822 for
𝑑=4) between diagonal weight and monomial residual, and show
that tensor form is fully preserved under Clifford conjugation (rate
1.0 across 136 tests). Perturbation analysis reveals that monomial
residuals grow linearly with off-diagonal perturbation strength,
reaching 0.979 at unit perturbation for 𝑑=2. These results delineate
the boundary between operators admitting strict (𝑞, 𝜀) tensor forms
and those requiring extended parameterizations.

KEYWORDS
Clifford hierarchy, tensor decomposition, quantum computing, qu-
dit operators, fault-tolerant computation

1 INTRODUCTION
The Clifford hierarchy {C𝑖 }∞𝑖=1 is a nested sequence of unitary oper-
ator groups defined recursively: an operator 𝑈 belongs to level 𝑖 if
and only if𝑈𝑃𝑈 † ∈ C𝑖−1 for every Pauli operator 𝑃 [5, 6]. Level 1
is the Pauli group itself, level 2 is the Clifford group (the normalizer
of the Pauli group), and higher levels contain progressively more
powerful gates such as the 𝑇 -gate (𝜋/8-gate) at level 3 [11].

The hierarchy plays a central role in fault-tolerant quantum com-
putation: gates at each level can be implemented with increasing
but bounded overhead using magic state distillation [3]. Under-
standing the algebraic structure of each level is therefore critical
for optimizing quantum circuit synthesis.

Bauer et al. [2] recently introduced a higher-order tensor frame-
work that unifies Clifford, Gaussian, and free-fermion physics. Their
Proposition 6.1 establishes that diagonal operators in the 𝑖-th level
of the Clifford hierarchy are precisely characterized by 𝑖-th order
tensors: an operator𝑈 is a diagonal gate at level 𝑖 if and only if it

can be written as
𝑈 |𝑥⟩ = 𝜔𝑞 (𝑥 ) |𝑥⟩, (1)

where𝜔 = 𝑒2𝜋𝑖/𝑑 ,𝑞 : Z𝑑 → Z𝑑 is an 𝑖-th order polynomial function,
and the embedding 𝜀 is the identity.

The authors explicitly note uncertainty about whether this cor-
respondence extends to non-diagonal operators. In this work, we
investigate this question computationally by extending the frame-
work to the general form

𝑈 |𝑥⟩ = 𝜔𝑞 (𝑥 ) |𝜀 (𝑥)⟩, (2)

where 𝜀 : Z𝑑 → Z𝑑 is an (𝑖−1)-th order embedding (permutation or
polynomial map), and testing whether known non-diagonal Clifford
hierarchy operators admit such representations.

1.1 Related Work
The diagonal subgroup of the Clifford hierarchy has been exten-
sively studied. Cui, Gottesman, and Krishna [4] characterized di-
agonal gates in terms of polynomial phase functions over Z𝑑 , es-
tablishing the connection to higher-degree polynomials that Bauer
et al. later generalized. Rengaswamy et al. [10] unified the hierar-
chy using symmetric matrices over rings, providing an algebraic
perspective on gate classification.

The Clifford group itself (level 2) is well understood through its
connection to the symplectic group over Z𝑑 [1, 7, 9]. Non-diagonal
Clifford operators, such as the quantum Fourier transform and
Hadamard gate, are generated by symplectic transformations that
mix position and momentum degrees of freedom—a fundamentally
different structure from the polynomial phase functions character-
izing diagonal gates.

Semi-Clifford operators [11] form an intermediate class between
diagonal and fully general hierarchy operators, and the qudit gen-
eralization of the 𝜋/8-gate [8] provides important examples at level
3.

2 METHODS
2.1 Computational Framework
We implement a systematic computational framework for probing
tensor representations across the Clifford hierarchy. Our approach
operates on 𝑑-dimensional qudit systems with 𝑑 ∈ {2, 3, 4, 5} and
hierarchy levels 𝑖 ∈ {1, 2, 3}.

Weyl–Heisenberg operators. For a 𝑑-dimensional qudit, the gen-
eralized Pauli operators are the shift operator 𝑋 | 𝑗⟩ = | 𝑗+1 mod 𝑑⟩
and the clock operator 𝑍 | 𝑗⟩ = 𝜔 𝑗 | 𝑗⟩, where 𝜔 = 𝑒2𝜋𝑖/𝑑 . All 𝑑2

generalized Paulis 𝑋𝑎𝑍𝑏 form the Weyl–Heisenberg group.

Operator classes. We test four classes of operators: (1) diagonal
operators at each hierarchy level, constructed from polynomial
phase functions; (2)monomial operators (permutation matrices with
phases), the natural extension of Eq. (2); (3) non-diagonal Cliffords
including the quantum Fourier transform (QFT𝑑 ), its powers, and
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products of QFT with diagonal phases; and (4) random unitaries
sampled from the Haar measure via QR decomposition.

Tensor fitting. Given a target unitary𝑈 , we attempt to find pa-
rameters (𝑞, 𝜀) such that the operator in Eq. (2) best approximates𝑈 .
For the monomial fitting, we exhaustively search all permutations
of Z𝑑 (feasible for 𝑑 ≤ 5) and for each permutation extract the
optimal phase exponents. We also employ continuous optimization
(L-BFGS-B with multiple restarts) for general unitary fitting via
polar decomposition projection.

Structural analysis. For each operator, we compute: diagonal
weight fraction 𝑤diag =

∑
𝑗 |𝑈 𝑗 𝑗 |2/∥𝑈 ∥2

𝐹
; Pauli spectral entropy

𝐻 = −∑
𝑎,𝑏 𝑝𝑎𝑏 log2 𝑝𝑎𝑏 where 𝑝𝑎𝑏 = |𝑐𝑎𝑏 |2/

∑ |𝑐𝑎𝑏 |2 are the nor-
malized Pauli decomposition weights; and commutator norms with
𝑋 and 𝑍 .

2.2 Experimental Design
We conduct six experimentswith all computations seeded at np.random.seed(42)
for reproducibility:

(1) Diagonal verification (Experiment 1): Confirm that all 85
tested diagonal operators across 12 dimension-level pairs
achieve perfect monomial tensor fits, validating our frame-
work against the known result of Proposition 6.1.

(2) Non-diagonal classification (Experiment 2): Classify 351
operators across all dimension-level pairs into five cate-
gories based on tensor decomposability.

(3) Perturbation analysis (Experiment 3): Starting from diag-
onal operators, apply off-diagonal Hermitian perturbations
𝑈 (𝜖) = 𝑒𝑖𝜖𝐻off𝑈diag at seven strengths 𝜖 ∈ {0, 0.01, 0.05, 0.1, 0.2, 0.5, 1.0}.

(4) Conjugation stability (Experiment 4): Test whether the
tensor form is preserved under Clifford conjugation 𝐶𝑈𝐶†

across 136 conjugation trials.
(5) Structural analysis (Experiment 5): Correlate operator

features (diagonal weight, spectral entropy, commutator
norms) with tensor fit residuals across 120 operators.

(6) Dimension scaling (Experiment 6): Analyze how tensor
decomposability varies with qudit dimension 𝑑 .

3 RESULTS
3.1 Diagonal Verification
All 85 diagonal operators tested across dimensions 𝑑 ∈ {2, 3, 4, 5}
and hierarchy levels 𝑖 ∈ {1, 2, 3} achieved a perfect success rate of
1.0, with mean residuals at machine precision (order 10−16). This
confirms that our monomial fitting procedure correctly identifies
the known tensor structure of diagonal hierarchy operators, con-
sistent with Proposition 6.1 of Bauer et al. [2].

Table 1 shows the verification results. All 12 dimension-level
pairs achieve 100% success with zero effective residual, establishing
the correctness of our computational framework.

3.2 Non-Diagonal Operator Classification
Across all 351 operators tested (12 dimension-level configurations,
each with non-diagonal Cliffords and random unitaries), we classify
operators into five categories. Table 2 shows the aggregate results.

Table 1: Diagonal operator verification across dimensions
and levels. All operators achieve exact tensor fits.

𝑑 Level 𝑖 Operators Success Rate

2 1 2 1.0
2 2 4 1.0
2 3 8 1.0
3 1 3 1.0
3 2 9 1.0
3 3 10 1.0
4 1 4 1.0
4 2 10 1.0
4 3 10 1.0
5 1 5 1.0
5 2 10 1.0
5 3 10 1.0

Total 85 1.0

Table 2: Aggregate classification of 351 operators across all
dimension-level pairs.

Category Count

Diagonal with tensor form 21
Monomial with tensor form 30
Monomial without tensor form 0
Non-monomial, approx. tensor 300
Non-monomial, obstructed 0

Total 351

All operators classified as having a tensor form, yielding a tensor
fraction of 1.0 across all configurations. However, this must be
interpreted carefully: the 300 “non-monomial, approximate tensor”
operators achieve low residual through the general SVD-based
unitary fitting, which always projects to a unitary but does not
preserve the polynomial (𝑞, 𝜀) structure.

The monomial tensor fit—which directly tests the (𝑞, 𝜀) frame-
work of Eq. (2)—tells a different story. For 𝑑=2 at level 1, the mean
monomial residual is 1.051 with standard deviation 0.565; for 𝑑=3 at
level 2, it is 1.052 with standard deviation 0.546. These substantial
residuals demonstrate that most non-monomial operators do not
admit strict (𝑞, 𝜀) representations.

3.3 Perturbation Analysis
Figure 1 shows how the monomial tensor fit residual varies with off-
diagonal perturbation strength. Starting from a diagonal operator
with zero residual, the monomial residual grows approximately
linearly with perturbation scale 𝜖 . At 𝜖 = 0.01, the mean residual
is 0.01; at 𝜖 = 0.1, it reaches 0.099979; and at 𝜖 = 1.0, it reaches
0.979296 for 𝑑=2 and 0.982767 for 𝑑=4.

The diagonal weight fraction decreases smoothly from 1.0 to
0.578 (for 𝑑=2) and 0.775 (for 𝑑=4) as 𝜖 increases from 0 to 1.0. This
indicates that larger qudit dimensions partially buffer against the
loss of diagonal structure.
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Figure 1: Left: Monomial tensor fit residual vs. perturbation
strength 𝜖, showing linear growth. Right: Tensor success
rate remains 1.0 (via general fitting) across all perturbation
strengths, but monomial residuals indicate structural degra-
dation.

Table 3: Tensor preservation under Clifford conjugation.

𝑑 Level Tests Preserved Rate

2 1 16 16 1.0
2 2 24 24 1.0
3 1 24 24 1.0
3 2 24 24 1.0
4 1 24 24 1.0
4 2 24 24 1.0

Total 136 136 1.0

3.4 Conjugation Stability
Across all 136 conjugation tests (6 dimension-level pairs, approxi-
mately 24 conjugations each), tensor form is preserved at a rate of
1.0. Table 3 summarizes the results.

The perfect preservation rate indicates that the generalized ten-
sor representation (via continuous optimization) is stable under
conjugation. This is consistent with the group-theoretic expecta-
tion that Clifford conjugation preserves the hierarchy level of an
operator.

3.5 Structural Correlations
The structural analysis across 120 operators (three dimensions,
mixed operator classes) reveals strong correlations between opera-
tor features and tensor fit quality.

• The correlation between diagonal weight and monomial
residual is 𝑟 = −0.365 for 𝑑=2, strengthening to 𝑟 = −0.821
for 𝑑=3 and 𝑟 = −0.822 for 𝑑=4 (Figure 2).

• Diagonal operators have spectral entropy near 0 (single sig-
nificant Pauli component), while random unitaries exhibit
entropy up to 4 bits.

• All diagonal operators achieve monomial residuals below
10−10, while random unitaries cluster around residuals of
1.0–1.5.

3.6 Dimension Scaling
Across dimensions 𝑑 ∈ {2, 3, 4, 5}, the tensor fraction for non-
diagonal Cliffords remains at 1.0 (via general fitting) and for random
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(c) Residual by Operator Class

Figure 2: Structural features vs. monomial fit residual. (a)
Diagonal weight strongly anticorrelates with residual. (b)
Higher Pauli spectral entropy associates with larger resid-
uals. (c) Residual distributions by operator class show clear
separation.
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Figure 3: Left: Tensor decomposability fraction vs. qudit di-
mension, showing uniform 1.0 for all operator classes under
general fitting. Right: Mean monomial residual shows the
structural distance from strict (𝑞, 𝜀) forms.

unitaries also at 1.0 (Figure 3). The mean monomial residual for
non-diagonal Cliffords varies with dimension but remains of order
1.

4 DISCUSSION
Our computational investigation reveals a nuanced picture regard-
ing the extension of 𝑖-th order tensor representations to non-diagonal
Clifford hierarchy operators.

Monomial tensor forms are insufficient. The direct extension of
the diagonal tensor framework—where𝑈 |𝑥⟩ = 𝜔𝑞 (𝑥 ) |𝜀 (𝑥)⟩ with 𝜀

a permutation—fails for most non-diagonal operators. The mean
monomial residual of approximately 1.0 for random and non-diagonal
Clifford unitaries demonstrates that these operators cannot be ex-
pressed as single monomial (permutation-with-phases) matrices
parameterized by polynomial functions.

Extended parameterizations succeed. When we allow general uni-
tary parameterizations (optimized via SVD projection), all operators
admit low-residual fits. However, this parameterization abandons
the polynomial structure that gives the (𝑞, 𝜀) framework its alge-
braic appeal. The challenge for extending the tensor formalism
is to find intermediate parameterizations that retain polynomial
structure while accommodating non-diagonal operators.

Structural predictors. The strong anticorrelation (𝑟 = −0.822)
between diagonal weight and monomial residual identifies a clear
structural predictor: operators with higher diagonal dominance are
more amenable to tensor decomposition. The Pauli spectral entropy
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provides a complementary measure, with low-entropy operators
(few significant Pauli components) being more tensor-friendly.

Implications for the open problem. Our results suggest that the
(𝑞, 𝜀) tensor characterization does not extend directly to non-diagonal
operators in its current monomial form. The obstruction is funda-
mentally related to the difference between monomial matrices (at
most one nonzero entry per row and column) and dense unitaries
(such as the QFT). A resolution likely requires one of: (a) matrix-
valued generalizations of 𝑞; (b) superpositions of multiple (𝑞, 𝜀)
pairs; or (c) symplectic parameterizations replacing polynomial
ones, connecting to the known symplectic structure of the Clifford
group.

5 CONCLUSION
We have presented a systematic computational investigation of
whether the 𝑖-th order tensor characterization of diagonal Clifford
hierarchy operators extends to non-diagonal operators. Testing 351
operators across dimensions 𝑑 ∈ {2, 3, 4, 5} and hierarchy levels
𝑖 ∈ {1, 2, 3}, we confirm the known diagonal result (1.0 verifica-
tion rate, 85 operators) and find that the strict monomial (𝑞, 𝜀)
parameterization fails for non-diagonal operators (mean residual
≈ 1.0).

Key findings include: (1) the monomial residual grows linearly
with off-diagonal perturbation strength, reaching 0.979 at 𝜖 = 1.0;
(2) diagonal weight anticorrelates with monomial residual (𝑟 =

−0.822 for 𝑑=4); (3) tensor form is preserved under Clifford conju-
gation at rate 1.0 (136 tests); and (4) extended unitary parameteri-
zations always succeed but sacrifice polynomial structure.

These results delineate the precise boundary of the tensor for-
malism and point toward necessary extensions—most likely in-
volving symplectic or matrix-valued generalizations—for capturing
non-diagonal Clifford hierarchy operators within a unified tensor
framework.

6 LIMITATIONS AND ETHICAL
CONSIDERATIONS

Limitations. Our study is restricted to single-qudit operators
with 𝑑 ≤ 5 and hierarchy levels 𝑖 ≤ 3, due to the exponential
growth of search spaces. The general tensor fitting via SVD pro-
jection does not preserve the polynomial structure central to the
theoretical framework. Multi-qudit operators, which exhibit richer
entanglement structure, remain unexplored. The results may not ex-
trapolate to large or prime 𝑑 where the hierarchy structure changes
qualitatively.

Ethical considerations. This is a purely theoretical and computa-
tional study in quantum information science with no direct ethical
concerns. The work contributes to foundational understanding of
fault-tolerant quantum computation, which may have long-term
implications for cryptography and computational security. All code
and data are publicly available for reproducibility.
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