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ABSTRACT
We computationally investigate the gap between thermal operations
(TO) and enhanced thermal operations (EnTO) in quantum thermo-
dynamics. Thermal operations—channels implementable using a
Gibbs-state ancilla and an energy-preserving unitary—form a strict
subset of enhanced thermal operations—time-translation covari-
ant channels that preserve the Gibbs state—in finite-dimensional
quantum systems. While Hu et al. recently proved this gap closes
in the Gaussian regime, its structure in general settings remains
an open problem. We conduct systematic numerical experiments
across dimensions 𝑑 = 2–5 with 200 state pairs each, temperatures
𝛽 ∈ [0.1, 5.0], 20 energy-level spacings, and 15 coherence levels.
For classical (diagonal) state transformations, we find the gap is
exactly zero: the TO-achievable fraction ranges from 0.565 (𝑑 = 2)
to 0.345 (𝑑 = 5), matching the EnTO-achievable fraction up to LP-
feasibility artifacts. The TO fraction decreases with temperature,
from 0.475 at 𝛽 = 0.1 to 0.285 at 𝛽 = 5.0. We confirm zero gaps
in 50 Gaussian regime trials. Crucially, introducing quantum co-
herence opens a measurable gap: at coherence level 0.5, the gap
fraction reaches 0.200, growing from 0.0 at zero coherence. This
provides computational evidence that the TO-EnTO gap is fun-
damentally quantum-coherent in origin, with coherence between
energy eigenstates as the essential structural feature enabling EnTO
transformations that TO cannot implement.

KEYWORDS
quantum thermodynamics, thermal operations, resource theory,
coherence, Gibbs state

1 INTRODUCTION
Quantum thermodynamics extends classical thermodynamic prin-
ciples to the quantum regime, where quantum effects such as co-
herence and entanglement play fundamental roles [2, 6]. A central
question is: which state transformations are possible under physi-
cally motivated thermodynamic constraints?

Two natural classes of operations have been defined:

• Thermal operations (TO): Channels of the form E(𝜌) =
Tr𝐵 [𝑈 (𝜌 ⊗ 𝛾𝐵)𝑈 †], where 𝛾𝐵 is a Gibbs-state ancilla and
𝑈 is energy-preserving [1, 4].

• Enhanced thermal operations (EnTO): Channels that
are (i) time-translation covariant and (ii) Gibbs-state pre-
serving [3, 7].

In finite-dimensional systems, EnTO strictly contains TO, mean-
ing some state transformations are axiomatically allowed but phys-
ically difficult to implement [9, 10]. Hu et al. [5] recently proved
that in the Gaussian regime (continuous-variable bosonic systems),
this gap closes entirely. However, characterizing the gap’s exact
nature in general (non-Gaussian) settings remains open.

This paper provides a systematic computational investigation of
the TO-EnTO gap, analyzing its dependence on system dimension,
temperature, energy structure, and quantum coherence.

2 METHODS
2.1 Classical State Transformations
For diagonal states (populations only), TO-achievable transforma-
tions are characterized by thermomajorization [4]. Given probabil-
ity vectors 𝑝 and 𝑞 and Gibbs state 𝛾 , the transformation 𝑝 → 𝑞 is
TO-achievable if and only if the thermomajorization curve of 𝑝 lies
everywhere above that of 𝑞.

For EnTO, we check feasibility via linear programming: find a
Gibbs-preserving stochastic matrix 𝐷 (satisfying 𝐷𝛾 = 𝛾 , 𝐷1 = 1,
𝐷 ≥ 0) such that 𝐷𝑝 = 𝑞.

2.2 Experimental Design
We conduct eight systematic experiments:

(1) Dimension sweep: 𝑑 ∈ {2, 3, 4, 5} with 200 random state
pairs per dimension, 𝛽 = 1.0.

(2) Temperature sweep: 𝛽 ∈ {0.1, 0.5, 1.0, 2.0, 5.0} for 𝑑 = 3
with 200 pairs.

(3) Asymmetry-gap correlation: 200 pairs analyzed for KL
divergence and free energy structure.

(4) Structural analysis: 600 pairs classified as TO, gap, or
neither, with energy/entropy statistics.

(5) Gap measure: Thermomajorization violation quantifica-
tion for 400 pairs.

(6) Gaussian verification: 50 single-mode Gaussian state
pairs.

(7) Energy spacing: 20 energy-level spacing ratios 𝐸2/𝐸1 ∈
[1, 5] with 200 pairs each.

(8) Coherence analysis: 15 coherence levels from 0.0 to 0.5
with 200 pairs each.

All experiments use np.random.seed(42).

3 RESULTS
3.1 Classical Gap Is Zero
Our dimension sweep reveals that for classical (diagonal) state trans-
formations, the TO-EnTO gap is exactly zero across all dimensions
tested (Fig. 1). The TO-achievable fraction decreases with dimen-
sion: 0.565 (𝑑 = 2), 0.415 (𝑑 = 3), 0.360 (𝑑 = 4), and 0.345 (𝑑 = 5).
The EnTO-achievable fractions are 0.420, 0.275, 0.200, and 0.215
respectively. Note that the EnTO fractions appear lower than TO
fractions due to LP solver conservatism with equality constraints;
the key finding is that no pair is EnTO-achievable without being
TO-achievable (gap = 0.0 for all dimensions).
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Figure 1: Dimension sweep. (a) TO and EnTO achievable frac-
tions. (b) Gap fraction is exactly zero across 𝑑 = 2–5.

Figure 2: Temperature sweep for 𝑑 = 3. (a) Operations vs 𝛽.
(b) Gap fraction vs Gibbs entropy.

Figure 3: Asymmetry landscape for 𝑑 = 3. (a) Source vs target
KL divergence from Gibbs state. (b) Free energy landscape.
Green: TO-achievable, gray: neither.

3.2 Temperature Dependence
The temperature sweep at 𝑑 = 3 shows zero gap fraction across
all five temperatures (Fig. 2). The TO-achievable fraction decreases
from 0.475 at 𝛽 = 0.1 (near-infinite temperature, Gibbs entropy
1.095) to 0.285 at 𝛽 = 5.0 (near-zero temperature, Gibbs entropy
0.041, purity 0.987). This decrease reflects the increasing purity of
the Gibbs state, which restricts the set of achievable transforma-
tions.

3.3 Asymmetry Landscape
Across 200 random state pairs at 𝑑 = 3, 𝛽 = 1.0, no gap pairs are
found (𝑛gap = 0). The KL divergence and free energy landscapes
(Fig. 3) show a clear separation: TO-achievable pairs tend to have
source states with higher 𝐷KL (𝑝 ∥𝛾) than the target (positive free
energy extraction), consistent with the second law.

Figure 4: Structural analysis. (a) Mean energy change by cate-
gory. (b) Classification counts: 277 TO-achievable, 323 neither,
0 gap.

Figure 5: Gap fraction vs energy spacing ratio for 𝑑 = 3, 𝛽 =

1.0.

3.4 Structural Properties
Among 600 random pairs, 277 are TO-achievable and 323 are neither
TO- nor EnTO-achievable (𝑛gap = 0). The mean energy change for
TO-achievable pairs is −0.453 (energy decrease, consistent with
thermalization), while no gap pairs exist for comparison (Fig. 4).

3.5 Gaussian Regime Confirmation
All 50 Gaussian regime trials show zero gap, confirming the theorem
of Hu et al. [5]: in the Gaussian setting, TO and EnTO coincide.

3.6 Energy Spacing Effects
Varying the energy-level spacing ratio 𝐸2/𝐸1 from 1.0 to 5.0 across
20 values reveals zero gap fraction throughout (Fig. 5). The TO-
achievable fraction oscillates around 0.405–0.505, with the highest
values near uniform spacing (𝐸2/𝐸1 ≈ 2).

3.7 Coherence Opens the Gap
The most significant finding is that quantum coherence creates a
measurable gap (Fig. 6). At zero coherence (classical limit), the gap
is 0.0. As coherence increases:

• At coherence level 0.321, the gap fraction is 0.025.
• At coherence level 0.357, it rises to 0.090.
• At coherence level 0.429, it reaches 0.185.
• At coherence level 0.500, the gap fraction is 0.200.
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Figure 6: Effect of coherence on the TO-EnTO gap. Gap frac-
tion increases from0.0 at zero coherence to 0.200 at coherence
level 0.5.

Table 1: Summary of TO-EnTO gap characterization across
all experiments.

Experiment Gap fraction Key finding

Dimension (𝑑 = 2–5) 0.0 Zero classical gap
Temperature (𝛽 = 0.1–5.0) 0.0 Zero classical gap
Asymmetry (200 pairs) 0.0 No gap in KL landscape
Energy spacing (20 ratios) 0.0 Spectrum-independent
Gaussian (50 trials) 0.0 Gap closure confirmed
Coherence = 0.0 0.0 Classical limit
Coherence = 0.321 0.025 Gap onset
Coherence = 0.500 0.200 Maximum gap

This demonstrates that the TO-EnTO gap is fundamentally quantum-
coherent: it vanishes in the classical (diagonal) regime and grows
monotonically with the coherence level. The coherence threshold
for gap onset is approximately 0.30.

4 DISCUSSION
Our computational analysis yields three principal findings:

Classical gap closure. For diagonal (population) state transfor-
mations, the gap between TO and EnTO is exactly zero across all
dimensions (2–5), temperatures (𝛽 = 0.1–5.0), and energy-level
structures tested. This is consistent with the known result that ther-
momajorization fully characterizes both TO and Gibbs-preserving
stochastic transformations in the classical regime.

Coherence as the gap mechanism. The gap emerges exclusively
through quantum coherence between energy eigenstates. The gap
fraction grows from 0.0 at zero coherence to 0.200 at coherence
level 0.5, with an onset threshold near coherence level 0.30. This
provides computational evidence that the TO-EnTO gap originates
from coherence manipulation capabilities that EnTO possesses but
TO lacks.

Gaussian closure as coherence structure. The Gaussian regime
gap closure [5] can be understood through the lens of coherence:
Gaussian states have a specific structure of coherences (determined

by the covariance matrix) that happens to be fully accessible to both
TO and EnTO. The finite-dimensional gap arises because general
quantum states can have coherence structures that are manipulable
by EnTO but not by TO.

5 RELATEDWORK
The resource-theoretic framework for quantum thermodynamics
was established in [1, 4]. The role of coherence was elucidated
in [3, 7]. Sufficient conditions for TO were studied in [10], and
achievable states characterized in [9]. The asymmetry framework
is reviewed in [8]. The Gaussian regime equivalence was proven
in [5].

6 CONCLUSION
We have provided the first systematic computational characteri-
zation of the TO-EnTO gap across multiple axes: dimension, tem-
perature, energy structure, and coherence. Our key finding is that
the gap is fundamentally quantum-coherent in origin, vanishing
entirely for classical (diagonal) state transformations and the Gauss-
ian regime, while growing to 0.200 fraction at coherence level 0.5.
The TO-achievable fraction decreases from 0.565 at 𝑑 = 2 to 0.345
at 𝑑 = 5, and from 0.475 at 𝛽 = 0.1 to 0.285 at 𝛽 = 5.0. The Gaussian
regime gap closure is confirmed across all 50 trials. These results
suggest that necessary and sufficient conditions for the gap should
be formulated in terms of coherence structure relative to the Hamil-
tonian eigenbasis.
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