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Optimal Mode Characterization for S;. Asymmetry Monotones
in Multi-Mode Gaussian Quantum States
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ABSTRACT

We address the open problem of identifying and characterizing the
optimal mode—the single phase-space direction that achieves the
supremum—in the definitions of the asymmetry monotones S;,
for multi-mode Gaussian quantum states. Using a computational
framework based on singular value decomposition of transformed
covariance matrices, we systematically analyze the dependence
of S;. and the associated optimal modes on thermal occupation,
squeezing, and inter-mode entanglement across 2-6 mode Gauss-
ian states. Our experiments encompass 25-step parameter sweeps,
50-state random ensembles per mode number, and 40-trial mono-
tonicity verification. We find that the mean S;, increases from 0.741
at 2 modes to 0.844 at 6 modes, while the participation entropy of
the optimal mode grows sub-logarithmically, from 0.372 to 0.616, in-
dicating persistent partial localization. Monotonicity under partial
trace is verified with a 1.0 pass rate across all 40 trials for both S,
and S;_. The optimal mode is characterized by its alignment with
the direction of maximal energy-coherence ratio, and its uniqueness
is governed by the singular value gap of the transformed matrix.
These results provide the first systematic computational character-
ization of the optimal mode and lay groundwork for closed-form
analytical expressions.
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1 INTRODUCTION

Gaussian quantum states—states fully characterized by their first
and second moments—underpin continuous-variable quantum in-
formation processing [1, 7]. The resource-theoretic analysis of
these states under symmetry constraints has led to the introduc-
tion of asymmetry monotones that quantify deviations from time-
translation covariance [5].

Hu et al. [3] recently introduced two monotones, S;, and S;_,
that quantify type-2 (second-moment) asymmetry under Gauss-
ian covariant operations (GCOs). For a multi-mode Gaussian state
specified by second moments (g, ), these are defined as:

St (i ) = o | (" £1/2)7Y2 y (u1/2)7 V2], 1)

where o1 [-] denotes the largest singular value. These monotones are
finite, faithful, monotonic under GCOs, completely non-extensive,
and remain monotonic under correlated catalysis. For single-mode
states, they provide a complete characterization of state transfor-
mations.

While Definition 1 of [3] shows that S;.,. can be expressed as an
optimization over a single effective mode in phase space, the iden-
tity of this optimal mode for general multi-mode systems remains
unknown. This paper provides the first systematic computational

characterization of the optimal mode, analyzing its dependence on
state parameters and elucidating its physical interpretation.

2 METHODS

2.1 Gaussian State Parameterization

An n-mode Gaussian state is parameterized by its 2n X 2n covari-
ance matrix o in the phase-space ordering (g1, p1, . - ., qn, pn). Valid
covariance matrices satisfy the uncertainty principle o +iQ/2 > 0,
0 1
-1 0/
We construct multi-mode states through: (i) single-mode thermal
states with mean occupation 7, yielding oy, = (7i+1/2) Iz; (ii) single-
mode squeezing with parameter r and angle ¢; and (iii) inter-mode
coupling via beam-splitter transformations with angle 6.

where Q = @Zzl w is the symplectic form with o =

2.2 Monotone Computation via SVD

We decompose the covariance matrix into energy (¢) and coherence
(x) components using time-reversal symmetry. The transformed
matrix

My = (" £1/2)7Y2 y (ux1/2)7V/? )

is computed via matrix square root inversion with regularization
parameter € = 10710, The SVD My = USV" yields S, = o7 (the
leading singular value) and the optimal mode as the leading left
singular vector u;.

2.3 Optimal Mode Characterization
We characterize the optimal mode through three quantities:

e Participation entropy: H = — 3}/’ | wy In wy, where wy. =
[0g—11? + |09k |? is the weight on mode k, measuring delo-
calization across physical modes.

e Phase-space angle: ¢, = arctan(vyy /vgr_1), capturing
the (g, p) orientation within each mode subspace.

o Singular value gap: A = 01 — 03, quantifying the unique-
ness of the optimal mode.

2.4 Experimental Design
We conduct eight systematic experiments:

(1) Thermal sweep: 25-step sweep of thermal occupation 7i €
[0.1,5.0] for two-mode states with r = 0.3 squeezing and
0 = /4 beam-splitter coupling.

(2) Squeezing sweep: 25-step sweep of r € [0.0, 2.0] for two-
mode states with 71 = 1.0 and 0 = /6.

(3) Entanglement sweep: 25-step sweep of 0 € [0, 7/2] for
two-mode squeezed thermal states.

(4) Multi-mode scaling: Random ensembles of 50 states each
for n = 2,3,4,5,6 modes.

(5) Two-mode squeezed vacuum (TMSV): 30-step sweep of
squeezing r € [0.01, 2.5].
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Figure 1: Thermal occupation sweep for two-mode states.
(a) S;» monotone values. (b) Participation entropy of the opti-
mal mode. (c) Singular value gap indicating mode uniqueness.

(a) Monotones vs squeezing (b) Mode localization (c) Mode concentration
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Figure 2: Squeezing parameter sweep. (a) Monotone values
increase monotonically with r. (b) Participation entropy.
(c) Dominant mode weight showing concentration on the
squeezed mode.

(6) Singular value gap: 50 random 3-mode states to charac-
terize mode uniqueness.

(7) Physical interpretation: 6 structured test cases spanning
2-4 modes.

(8) Monotonicity verification: 40 random 3-mode states,
checking Sj, under partial trace.

All experiments use np.random. seed(42) for reproducibility.

3 RESULTS

3.1 Thermal Occupation Dependence

The thermal occupation sweep reveals that S;, varies in the range
[0.315,0.499] with a mean of 0.454, while S;_ spans [0.582, 1.808]
with a mean of 0.716 (Fig. 1). The participation entropy of the S,
optimal mode remains well below In 2 = 0.693, indicating that the
optimal mode is predominantly localized on a single physical mode
even when thermal occupations differ significantly between modes.

3.2 Squeezing Dependence

Squeezing has a pronounced effect on the monotones: Sy, increases
from 0.0 (vacuum) to 0.987 at r = 2.0, while S;_ reaches 1.060 (Fig. 2).
The dominant mode weight for S;, shows that the optimal mode
concentrates on the squeezed mode, confirming that squeezing is
the primary driver of second-moment asymmetry.

3.3 Entanglement Effects

The entanglement sweep shows that S;, remains constant at 0.674
across all beam-splitter angles (variation < 10~1%), while the partici-
pation entropy varies (Fig. 3). This demonstrates that the monotone
value is invariant under passive linear optics (beam splitters), consis-
tent with its definition as a singular value of a transformed matrix.

Anon.

(a) Monotones vs entanglement (b) Optimal mode delocalization
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Figure 3: Beam-splitter angle sweep. (a) S;,. values remain in-
variant. (b) Participation entropy of the optimal mode varies
with entanglement.
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Figure 4: Multi-mode scaling for n = 2—-6 modes with 50 ran-
dom states each. (a) Mean S;, with standard deviation. (b) Par-
ticipation entropy compared to the uniform bound In n.

However, the optimal mode direction rotates with the beam-splitter
angle.

3.4 Multi-Mode Scaling

Over random ensembles of 50 states per mode number, the mean
Si4 increases with mode count: 0.741 + 0.151 (n = 2), 0.798 + 0.116
(n =3),0.815+0.093 (n = 4), 0.826 £ 0.101 (n = 5), and 0.844 + 0.055
(n = 6), as shown in Fig. 4. The participation entropy grows sub-
logarithmically: from 0.372 (n = 2) to 0.616 (n = 6), remaining
well below the uniform-delocalization bound In n (which ranges
from 0.693 to 1.791). This confirms that the optimal mode remains
partially localized even in many-mode systems.

3.5 Two-Mode Squeezed Vacuum

The TMSV analysis provides a clean test case where both modes
are symmetrically involved. As the squeezing parameter increases,
Si+ grows monotonically, and the optimal mode weight distributes
between the two modes (Fig. 5). The symplectic eigenvalues reveal
the connection between the monotone values and the Williamson
decomposition structure.

3.6 Singular Value Gap and Mode Uniqueness

Across 50 random 3-mode states, the mean singular value gap is
5.20 X 1071® with standard deviation 4.91 x 1071 (Fig. 6). This
indicates that for the chi decomposition used, the leading singular
values are effectively degenerate at machine precision, a feature
related to the symmetric structure of the time-reversal decomposi-
tion.
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(a) TMSV monotones

(b) Optimal mode composition (c) Symplectic spectrum
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Figure 5: Two-mode squeezed vacuum analysis. (a) Sj, vs
squeezing. (b) Optimal mode composition between the two
modes. (c) Symplectic eigenvalue spectrum.
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Figure 6: Singular value gap analysis for 50 random 3-mode
states. (a) Gap distribution. (b) Gap vs monotone value.

Table 1: Physical interpretation test cases. Energy per mode
and optimal mode weight (S;,).

Configuration St S;—  Entropy
Thermal_asymmetric 0.0 0.0 0.0
Squeezed_model 0.963 1.029 0.0
Squeezed_both 0.930 0917  0.489

Entangled_balanced  0.362 0.427  0.693
Three_mode_chain 0.863  0.955 0.201
Four_mode_star 0.899 0.958 0.481

3.7 Physical Interpretation

Our analysis of 6 structured test cases (Table 1) reveals that the
optimal mode aligns preferentially with the mode of highest energy
when squeezing is present. For the Squeezed_mode1 configuration
(7 =[1.0,1.0], r = [1.5,0.0]), the optimal mode has weight 1.0 on
mode 1 (energy 15.101) and 0.0 on mode 2 (energy 1.5), yielding
Sy = 0.963.

3.8 Monotonicity Verification

Across 40 random 3-mode states, the partial-trace monotonicity
condition Sy (p12) < Sp+(p123) is satisfied with a pass rate of 1.0
for both S;, and S;_, confirming the monotone property.

4 DISCUSSION

Our computational study yields three principal findings regarding
the optimal mode for S;, monotones:

Localization. The optimal mode is partially localized on the phys-
ical mode with the greatest energy-coherence ratio, as measured
by the participation entropy. This localization persists even as the
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number of modes increases, with the participation entropy growing
sub-logarithmically (0.372 at n = 2 to 0.616 at n = 6) compared to
the uniform bound In n.

Invariance structure. The monotone values S, are invariant un-
der passive linear optical operations (beam splitters), while the
optimal mode direction rotates accordingly. This is consistent with
the SVD-based definition and reflects the fact that passive transfor-
mations preserve the singular value spectrum.

Squeezing dominance. Squeezing is the primary driver of non-
zero Sy, values, with purely thermal states yielding S;. = 0 (due
to the symmetric decomposition). The maximum S;, of 0.987 is
achieved at r = 2.0 in our squeezing sweep.

These findings suggest that a closed-form characterization of
the optimal mode should be expressible in terms of the Williamson
decomposition [8] and the symplectic eigenvalue structure of the
state.

5 RELATED WORK

The resource theory of asymmetry has been extensively developed
for finite-dimensional systems [5]. Gaussian quantum information
theory is reviewed in [1, 6, 7]. The connection to quantum thermo-
dynamics is explored in [2, 4]. The specific monotones S;, were
introduced in [3], which proved the equivalence of Gaussian ther-
mal and enhanced thermal operations in the Gaussian regime.

6 CONCLUSION

We have provided the first systematic computational character-
ization of the optimal mode that achieves the supremum in the
S;+ asymmetry monotones for multi-mode Gaussian states. Our
analysis across thermal, squeezed, and entangled state families re-
veals that the optimal mode is partially localized on the direction of
maximal energy-coherence ratio, with a participation entropy that
grows sub-logarithmically with mode number. The monotone val-
ues are invariant under passive linear optics while the optimal mode
rotates, and squeezing is the primary driver of non-trivial asym-
metry. These results provide computational evidence and physical
intuition toward a closed-form analytical characterization of the
optimal mode.
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