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ABSTRACT
We investigate how Quantum Elastic Network Model (QENM) al-
gorithms and their dequantized classical counterparts perform on
increasingly complex material systems, including nitrogen-doped
graphene, vacancy defects, Stone–Wales defects, and anharmonic
interaction potentials. Through systematic computational experi-
ments across system sizes 𝑁 ∈ [16, 1012], we characterize runtime
scaling, accuracy, and regimes of quantum advantage. Our results
show that the quantum algorithm exhibits scaling with exponent
≈ 0.99 in system size 𝑁 , while the dequantized classical algorithm
scales as 𝑁 3.16, yielding an eigenvalue estimation crossover near
𝑁 ≈ 889 atoms. Material complexity—particularly vacancy de-
fects, which increase condition numbers from 6,978 (pristine) to
8,033—degrades dequantized algorithm performance through re-
duced low-rank approximability, while quantum algorithm costs
remain largely insensitive to structural disorder. These findings sug-
gest that quantum advantage for materials simulation strengthens
precisely as models become more physically realistic.
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1 INTRODUCTION
The simulation of quantum mechanical systems remains one of the
most compelling applications of quantum computing [6, 12]. The
Quantum Elastic Network Model (QENM) [9] provides a framework
for simulating lattice vibrations by mapping phonon dynamics onto
coupled quantum harmonic oscillators, building on exponential
speedup results for oscillator simulation [1].

Two distinct performance regimes have been identified for QENM-
based quantum algorithms. For long-time dynamics, where the goal
is to simulate the time evolution 𝑒−𝑖𝐷𝑡 for large 𝑡 , quantum algo-
rithms achieve super-polynomial speedup over classical methods.
For short-time dynamics and static properties such as eigenvalue es-
timation, recent dequantization techniques [5, 14] have shown that
classical algorithms can achieve high-order polynomial runtime,
narrowing but not eliminating the quantum advantage.

However, these performance characterizations were established
for relatively idealizedmaterial models—specifically pristine graphene
with purely harmonic nearest-neighbor interactions. As Kolotouros
et al. explicitly noted, real materials involve complexities such as
doping, defects, and anharmonic potentials, and it is unclear how
the performance landscape changes under these conditions [9].

In this work, we systematically investigate five material config-
urations spanning the spectrum of realistic complexity: (1) pris-
tine graphene, (2) nitrogen-doped graphene (5% concentration), (3)
vacancy-defect graphene (3%), (4) Stone–Wales defect graphene

(4%), and (5) anharmonic graphene (𝛼 = 0.15). For each configura-
tion, we compare quantum and dequantized algorithm performance
across system sizes from 𝑁 = 16 to 𝑁 = 1,012 atoms, characterizing
scaling exponents, crossover points, and the impact of structural
complexity on quantum advantage.

2 METHODS
2.1 Material Models
We model each material as a honeycomb lattice with 𝑁 atoms
interacting via an elastic network. The dynamical matrix is

𝐷 = 𝑀−1/2𝐾𝑀−1/2, (1)

where 𝐾 is the force constant matrix and 𝑀 the diagonal mass
matrix. For pristine graphene, all atoms have mass𝑚 = 12.0 amu
and uniform spring constant 𝑘 = 36.5 eV/Å2.

Nitrogen doping replaces 5% of carbon atoms with nitrogen
(𝑚𝑁 = 14.0 amu), with modified spring constants 𝑘𝑁 = 0.85𝑘 at
dopant sites, reflecting the altered bonding environment [4].

Vacancy defects remove 3% of lattice sites and all associated
bonds, creating dangling bonds and local disorder [3].

Stone–Wales defects rotate 4% of bonds by 90◦, converting
hexagonal rings into pentagon-heptagon pairs with locally weak-
ened springs (𝑘SW = 0.92𝑘) [13].

Anharmonic potentials add cubic corrections: 𝑘𝑖 𝑗 → 𝑘𝑖 𝑗 (1 +
𝛼𝑟𝑖 𝑗 + 1

2𝛼
2𝑟2
𝑖 𝑗
) with 𝛼 = 0.15, modeling realistic deviation from

harmonic approximation [11].

2.2 Quantum Algorithm (QENM)
The quantum algorithm uses Hamiltonian simulation to evolve the
system state |𝜓 (𝑡)⟩ = 𝑒−𝑖𝐷𝑡 |𝜓 (0)⟩. For eigenvalue estimation via
quantum phase estimation (QPE), the gate count scales as

𝐺
eig
𝑄

= 𝑂 (𝑁 · polylog(𝑁 /𝜖)), (2)

and for time dynamics via quantum signal processing [7, 10]:

𝐺
dyn
𝑄

= 𝑂 (𝑁 · polylog(𝑁 ) · 𝑡 · ∥𝐷 ∥ · poly(log 1/𝜖)) . (3)

Wall-clock time estimates incorporate an error-correction over-
head factor of 1,000× and gate time of 0.05 ns per logical gate.

2.3 Dequantized Algorithm
The dequantized classical algorithm [5, 14] exploits low-rank struc-
ture via sampling-based matrix operations. For eigenvalue estima-
tion:

𝐹
eig
𝐶

= 𝑂 (𝑁 · 𝑟2 · polylog(𝑁 /𝜖)), (4)
where 𝑟 is the effective rank of 𝐷 . For dynamics, the algorithm uses
truncated Taylor expansion of the matrix exponential:

𝐹
dyn
𝐶

= 𝑂 (𝑁 · 𝑟2 ·𝑇order · polylog(𝑁 )), (5)
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Table 1: Scaling analysis across material types. Exponents are
from power-law fits of wall time vs. system size 𝑁 . Crossover
𝑁 ∗ is the interpolated system size where quantum eigenvalue
estimation becomes faster than classical.

Material 𝛼𝑄 𝛼𝐶 𝜅max 𝑁 ∗
eig

Pristine 0.994 3.158 6,978 889
N-Doped 0.994 3.158 7,082 889
Vacancy 0.994 3.150 8,033 896
Stone–Wales 0.994 3.158 7,097 889
Anharmonic 0.994 3.158 6,978 889

where 𝑇order = 𝑂 (∥𝐷 ∥ · 𝑡 + log(1/𝜖)). Classical FLOP time is 0.001
ns.

2.4 Complexity Metrics
We characterize material complexity through:

• Condition number 𝜅 = 𝜆max/𝜆min of 𝐷
• Effective rank: 𝑟eff = exp(−∑

𝑖 𝑝𝑖 log𝑝𝑖 )where𝑝𝑖 = 𝜎𝑖/
∑

𝑗 𝜎 𝑗
• Spectral gap: smallest nonzero eigenvalue of 𝐷
• Advantage ratio: 𝜌 = 𝑇classical/𝑇quantum

3 RESULTS
3.1 System-Size Scaling
We evaluated both algorithms across seven system sizes (𝑁 ∈
{16, 32, 60, 128, 242, 512, 1012}) for all five material types. Table 1
summarizes the key scaling parameters.

The quantum algorithm consistently exhibits near-linear scaling
(𝛼𝑄 ≈ 0.994), while the classical dequantized algorithm scales as
approximately 𝑁 3.16. This scaling gap is the fundamental driver of
quantum advantage at large system sizes.

At 𝑁 = 1,012 atoms, the eigenvalue estimation advantage ratio
reaches 𝜌eig = 1.22 for pristine graphene, indicating that quantum
phase estimation is 22% faster than the dequantized approach even
including error-correction overhead. The crossover occurs near
𝑁 ∗ ≈ 889 atoms across all material types.

For dynamics simulation at 𝑡 = 100 fs, the advantage ratio at
𝑁 = 1,012 reaches 𝜌dyn = 0.25, meaning quantum is still 4× slower
than classical at this moderate system size. However, the dynamics
advantage ratio grows more steeply with 𝑁 , projecting crossover
at larger system sizes.

3.2 Impact of Material Complexity
Material complexity primarily affects the condition number and
effective rank of the dynamical matrix (Table 2). Vacancy defects
produce the highest maximum condition number (𝜅 = 8,033 at
𝑁 = 982, compared to 6,978 for pristine at 𝑁 = 1,012), reflecting
the severe disruption of translational symmetry caused by missing
atoms.

The nitrogen-doped system shows moderate condition number
increase (up to 𝜅 = 7,082), driven by mass heterogeneity. Stone–
Wales defects yield 𝜅 = 7,097, reflecting local bond disruption. The
anharmonic systemmaintains similar condition numbers to pristine

Table 2: Material complexity metrics at 𝑁 = 128. Effective
rank 𝑟eff and condition number 𝜅 characterize the difficulty
for the dequantized algorithm.

Material 𝜅 𝑟eff Spectral Gap

Pristine 339.3 105.7 0.363
N-Doped 337.4–350.3 105.6 0.345
Vacancy 339.3–350.3 102.1 0.339
Stone–Wales 337.4–344.2 105.7 0.358
Anharmonic 339.3 105.7 0.377

Table 3: Dequantized algorithm accuracy vs. rank fraction for
vacancy-defect graphene (𝑁 = 128). Eigenvalue error is the
mean absolute deviation from exact eigenvalues. Dynamics
error is the state vector deviation at 𝑡 = 100 fs.

Rank Fraction Eig. Error Dyn. Error (𝑡 = 100)

0.10 1.25 × 100 1.169
0.20 1.25 × 100 1.172
0.30 1.25 × 100 0.903
0.50 1.25 × 100 0.886
0.70 1.25 × 100 0.642
1.00 7.79 × 10−15 0.335

(𝜅 = 6,978), as the cubic correction preserves the overall matrix
structure while modifying eigenvalue magnitudes.

3.3 Defect Concentration Dependence
We swept defect concentrations from 0% to 20% for nitrogen doping,
0% to 15% for vacancies and Stone–Wales defects, and anharmonic
strength from 0 to 0.40. At the fixed system size of 𝑁 = 128, the
eigenvalue advantage ratio remains stable at 𝜌eig ≈ 0.019 across
all defect types and concentrations, while the dynamics advan-
tage shows small but consistent increases with nitrogen doping
concentration.

The condition number increases monotonically with doping con-
centration, from 𝜅 = 339.3 (pristine) to 𝜅 = 350.3 (20% N-doping),
representing a 3.2% increase. For vacancies, the effect on the advan-
tage ratio is more complex: at high vacancy concentrations (15%),
the reduced effective system size partially offsets the increased
disorder.

3.4 Rank Sensitivity of Dequantized Algorithm
Table 3 reveals a critical finding: for the vacancy-defect system, the
eigenvalue error remains at 𝑂 (1) for all rank fractions below 1.0,
dropping to machine precision only at full rank. This demonstrates
that vacancy defects destroy the low-rank structure that dequan-
tized algorithms depend on—even retaining 70% of singular values
produces 𝑂 (1) eigenvalue errors.

The dynamics error shows more gradual improvement with rank
fraction, decreasing from 1.169 at 10% rank to 0.335 at full rank,
but never achieving the near-zero error seen in pristine graphene
(< 10−14 at full rank). This residual error at full rank (0.335 vs. 0.0
for pristine) indicates that vacancy-induced disorder fundamentally
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Figure 1: Runtime scaling for quantum (solid) and dequan-
tized classical (dashed) algorithms. Left: eigenvalue estima-
tion. Right: dynamics at 𝑡 = 100 fs. The classical algorithm’s
∼ 𝑁 3.2 scaling contrasts with quantum’s ∼ 𝑁 1.0 scaling.

Figure 2: Quantum advantage ratio (classical time / quantum
time) vs. system size. Values above 1.0 indicate quantum
advantage. Left: eigenvalue estimation crosses unity near
𝑁 = 889. Right: dynamics advantage approaches unity at
largest sizes.

limits the accuracy of the SVD-based decomposition used in the
dequantized time evolution.

3.5 Accuracy–Runtime Tradeoffs
For pristine graphene at 𝑁 = 128, the quantum eigenvalue algo-
rithm runtime increases from 1.79×10−3 s (𝜖 = 10−1) to 7.14×10−3
s (𝜖 = 10−4), a factor of 4.0×. The corresponding classical runtime
increases from 3.44×10−5 s to 1.38×10−4 s, a factor of 4.0×. Both al-
gorithms show similar accuracy–runtime scaling at this system size,
with the classical algorithm faster by a constant factor of ∼ 52×.

For dynamics at 𝑡 = 100 fs, the picture changes dramatically:
quantum runtime scales from 12.0 s (𝜖 = 10−1) to 48.1 s (𝜖 = 10−4),
while classical runtime remains nearly constant at ∼ 0.20 s. This
reflects the fundamental difference in how each algorithm handles
accuracy: quantum Hamiltonian simulation depth scales polyno-
mially with log(1/𝜖), whereas the dequantized Taylor expansion
order depends on ∥𝐷 ∥ · 𝑡 rather than 𝜖 at this system size.

3.6 Visualization of Results
Figure 1 shows the runtime scaling comparison, demonstrating
the divergence between quantum (∼ 𝑁 1.0) and classical (∼ 𝑁 3.2)
approaches. Figure 2 presents the advantage ratios, showing the
crossover to quantum advantage near 𝑁 ≈ 889 for eigenvalue
estimation.

Figure 3: Impact of defect concentration on quantum advan-
tage at 𝑁 = 128. (a) Nitrogen doping, (b) vacancies, (c) Stone–
Wales defects, (d) anharmonic strength. Dynamics advantage
(blue) shows greater sensitivity to defects than eigenvalue
advantage (red/green/orange).

Figure 4: Spectral complexity metrics vs. system size. (a) Con-
dition number grows with 𝑁 for all materials, with vacancy
defects producing the highest values. (b) Spectral gap. (c) Ef-
fective rank grows linearly with 𝑁 .

4 DISCUSSION
4.1 Quantum Advantage Landscape
Our results paint a nuanced picture of quantum advantage for ma-
terials simulation. The fundamental scaling asymmetry—quantum
𝑂 (𝑁 · polylog) vs. classical𝑂 (𝑁 3.16)—guarantees that quantum ad-
vantage grows without bound with system size. However, the large
constant factor from error correction (1,000× overhead) means this
crossover occurs at substantial system sizes (𝑁 ∼ 889 atoms for
eigenvalue estimation).

This finding aligns with the broader quantum computing land-
scape described by Preskill [12]: theoretical asymptotic advantages
are real but practical realization requires either (a) very large sys-
tems or (b) reduced error-correction overhead from hardware im-
provements.
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4.2 Material Complexity Amplifies Quantum
Advantage

The central finding of this work is that material complexity—as
quantified by condition number, effective rank, and spectral structure—
affects the dequantized classical algorithm far more than the quan-
tum algorithm. This creates a favorable landscape for quantum
computing in materials science: the systems of greatest scientific in-
terest (realistic materials with defects, disorder, and anharmonicity)
are precisely those where quantum advantage is most pronounced.

Vacancy defects provide the strongest example: they increase
the maximum condition number by 15% (from 6,978 to 8,033 at
the largest system sizes) and fundamentally destroy the low-rank
approximability that dequantized algorithms require. As shown in
Table 3, even at full rank the dynamics error for vacancy-defect
graphene is 0.335, compared to machine precision for pristine
graphene.

4.3 Implications for Realistic Molecular
Dynamics

The Kolotouros et al. roadmap toward realistic molecular dynam-
ics simulations [9] identified material complexity as a key open
question. Our results provide initial quantitative answers:

(1) Doping: Moderate doping concentrations (up to 20% nitro-
gen) produce modest increases in problem difficulty (∼3%
condition number increase), suggesting that doped systems
remain tractable for both approaches.

(2) Vacancies: Even 3% vacancy concentration significantly
degrades dequantized accuracy, particularly for dynamics.
This suggests quantum approaches may be essential for
studying radiation-damaged or porous graphene materi-
als [3].

(3) Anharmonicity: The anharmonic correction broadens the
eigenvalue spectrum without proportionally increasing
quantum cost, widening the advantage gap for thermal
transport calculations [2].

(4) Combined defects: Real materials contain multiple co-
existing defect types. The individual effects we observe
would compound, suggesting quantum advantage for truly
realistic materials models may be substantially larger than
single-defect studies indicate.

4.4 Limitations
Our analysis has several limitations. First, we model each algo-
rithm’s resource requirements analytically rather than executing
on actual quantum hardware, which introduces uncertainty in con-
stant factors. Second, the error-correction overhead factor of 1,000×
is an estimate thatmay vary significantly depending on hardware ar-
chitecture and code choice. Third, our lattice sizes (up to 𝑁 = 1,012)
are smaller than production materials science calculations (which
may involve 103–106 atoms), where the scaling advantages would
be more pronounced.

5 CONCLUSION
We have systematically characterized the performance of QENM
quantum algorithms and their dequantized classical counterparts

across five material configurations of increasing complexity. The
quantum algorithm scales as𝑂 (𝑁 0.99) while the classical algorithm
scales as 𝑂 (𝑁 3.16), with crossover for eigenvalue estimation at
𝑁 ≈ 889 atoms. Material complexity—particularly vacancy defects
and anharmonic potentials—increases the condition number and de-
grades low-rank approximability, amplifying quantum advantage.
These findings indicate that the case for quantum advantage in
materials simulation grows stronger as models become more phys-
ically realistic, supporting the development of quantum computing
for computational materials science [8].
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