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Polynomial-Time Computability of the Lattice Theta Function:
Computational Experiments and Complexity Evidence
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ABSTRACT

The lattice theta function @(A, d) = Y ,ezn exp(27i (x +d) TA (x +
d)) arises naturally in number theory, quantum physics, and tensor
network contraction. Whether this function can be computed in
polynomial time for general complex symmetric matrices A with
large dimension n remains an open problem. We conduct a sys-
tematic computational investigation combining direct truncated
summation, Poisson dual summation, LLL lattice reduction, and
structured special-case algorithms. Our experiments across dimen-
sions n = 1 through 15 confirm exponential scaling of the general
summation domain, with the number of required lattice points
growing as exp(1.61n). We demonstrate that LLL reduction pro-
vides at most polynomial improvement insufficient to overcome this
exponential barrier. We identify a sharp tractability frontier: diago-
nal matrices admit O(n - R) polynomial-time computation, while
general dense matrices require O((2R + 1)") exponential effort.
Through the connection between the theta function and the Closest
Vector Problem, we provide computational evidence supporting the
conjecture that general-case polynomial-time computation is infea-
sible. Our results delineate precise boundaries between tractable
and intractable instances, informing the design of approximate and
quantum algorithms for this class of lattice sums.

KEYWORDS

lattice theta function, Siegel theta function, computational com-
plexity, lattice reduction, LLL algorithm, tensor networks, closest
vector problem

1 INTRODUCTION

The lattice theta function is a fundamental object in mathematics
that connects number theory, algebraic geometry, and mathemat-
ical physics. Given a complex symmetric matrix A € C"*" with
convergence-ensuring imaginary part and a displacement vector
d € R", the lattice theta function is defined as

O(A,d) = Z exp(27i (x +d) TA (x +d)). 1)

xezZn

This is a special case of the Siegel theta function [6, 9, 13], which
generalizes the classical Jacobi theta functions to higher dimensions.
Convergence of the series requires that the imaginary part Im(A)
be negative definite, so that the Gaussian envelope exp(—27 (x +
d)T[Im(A)| (x + d)) suppresses contributions from distant lattice
points.

The computational complexity of evaluating ®(A, d) has recently
gained attention through the work of Bauer et al. [3], who study
contraction of quadratic tensor networks. They establish that con-
tracting certain tensor networks with many Z factors in the kernel
reduces to computing the lattice theta function and note that no
polynomial-time algorithm is known for this quantity when n is
large. Resolving the computational status of ©(A, d) would thus

have direct implications for the tractability of tensor network con-
traction and related problems in quantum physics.

This paper presents a systematic computational investigation of
the lattice theta function across multiple algorithmic approaches:

(1) Direct truncated summation with rigorous error bounds,
establishing baseline exponential scaling (Section 2).

(2) Poisson dual summation via the modular transformation,
testing whether switching between primal and dual repre-
sentations can circumvent exponential cost (Section 2.2).

(3) LLL lattice reduction to improve the conditioning of the
underlying lattice, measuring the practical impact on con-
vergence rates (Section 2.3).

(4) Structured special cases where polynomial-time compu-
tation is provably achievable, delineating the tractability
frontier (Section 2.4).

(5) Hardness connections linking the theta function to NP-
hard lattice problems and #P-hard counting problems (Sec-
tion 2.5).

Our experiments confirm exponential scaling in the general case
while precisely characterizing the parameter regimes where effi-
cient computation is feasible. These results provide computational
evidence supporting the conjecture that no polynomial-time algo-
rithm exists for general lattice theta function evaluation.

1.1 Related Work

The computation of theta functions has a long history. In dimension
one, the Jacobi theta functions can be evaluated in polynomial time
using the arithmetic-geometric mean iteration [4]. Deconinck and
van Hoeij [5] developed algorithms for Riemann theta functions
(the genus-g generalization) that are polynomial-time for fixed
genus but exponential in the genus parameter, analogous to our
findings for the lattice dimension.

Lattice reduction algorithms, beginning with the celebrated LLL
algorithm [7] and its improvements [12], provide polynomial-time
preprocessing that can accelerate theta function computation. The
BKZ algorithm offers a quality—time tradeoff but does not achieve
polynomial time for the hardest instances.

The computational hardness of lattice problems is well estab-
lished. The Shortest Vector Problem (SVP) is NP-hard under ran-
domized reductions [1, 8], and the Closest Vector Problem (CVP)
is NP-hard. Regev [11] introduced the Learning with Errors frame-
work, demonstrating deep connections between worst-case lattice
hardness and average-case cryptographic assumptions. These lat-
tice problems are intimately connected to the theta function, as we
demonstrate in Section 2.5.

For counting problems, the permanent is #P-complete [14], and
the Ising partition function is #P-hard on general graphs [2]. The
theta function, as a weighted lattice point count, shares structural
similarities with these counting problems.
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2 METHODS

2.1 Direct Truncated Summation

The most straightforward approach to computing ©(A,d) is to
truncate the infinite sum (1) to a finite box {x € Z" : ||x||co < R}
where R is chosen to guarantee the desired precision. For b bits of
precision, the truncation radius satisfies

In2
R=| |22 |, @)

27 Amin

where Apip is the smallest eigenvalue of [Im(A)| (the negative of the
most negative eigenvalue of Im(A)). The number of lattice points
in the truncation box is (2R + 1)", yielding a total cost of

n/2
(Anfin ) ) ’ (3)

which is exponential in n for any fixed Ay, and b.

Tgirect = O

2.2 Poisson Dual Summation

The Poisson summation formula provides an alternative represen-
tation:

O(Ad) = det(—iA)_l/2 Z exp(—r[inA_ly + 27i de) . @
yezZn

When Im(A) is small (slow primal convergence), Im(A~!) is large
(fast dual convergence), and vice versa. We implement both rep-
resentations and select the one with faster convergence based on
eigenvalue comparison.

2.3 LLL Lattice Reduction

The LLL algorithm [7] finds an approximately orthogonal basis for
a lattice in polynomial time O(n® log B), where B bounds the input
basis norms. Given a unimodular transformation U (integer matrix
with | det(U)| = 1), the theta function transforms as

O(A,d) =0(UTAU, U d), 5)

since x +— Uy is a bijection on Z". By choosing U via LLL re-
duction of the Cholesky factor of [Im(A)|, the transformed matrix
UTAU has a more isotropic imaginary part, potentially reducing
the truncation radius.

2.4 Structured Special Cases

Diagonal matrices. When A = diag(ry, . .., 7n), the theta function

factors as

0(A,d) = [ [ 6s(z.d)), (6)
j=1

where 05(z, z) = ez exp(27i T(m + z)?) is the Jacobi theta func-
tion. Each one-dimensional factor requires O(R;) terms, giving a
total cost of O(n - Rmax), which is polynomial in both n and b.

Low-rank perturbations. For A= D + UV with diagonal D and
rank-r matrices U, V, partial Poisson summation reduces the cost
to O(n - 3" - poly(b)), polynomial for fixed r.

Anon.

Table 1: Computation time and term count vs. dimension
n (Im(A) scale o = 2.0, 30 bits precision). Direct summation
times and LLL-reduced times are wall-clock seconds.

n Terms Time (Direct) Time (LLL) Kpefore Kafter
1 7 0.0001 0.0001 1.0 1.0
2 25 0.0001 0.0002 2.3 2.3
3 125 0.0003 0.0004 4.0 4.0
4 625 0.0024 0.0034 9.2 14.5
5 3,125 0.3869 0.1014 12.0 14.3
6 15,625 0.0340 0.9601 17.2 10.1
7 78125 3.8339 3.2964 20.5 44.9

2.5 SVP/CVP Connection

For purely imaginary A = —i ¢t T with T positive definite and scaling
parameter ¢ > 0, the theta function becomes

O(~itT,d) = Z exp(=2nt (x +d) T (x +d)). @)
xX€Zm
Ast — oo, the sum is dominated by the lattice point x* minimizing
(x+d)TT (x+d), which is the Closest Vector Problem (CVP) solution.
Specifically,

—log |©(-itT,d
lim BOCHT Dl Gt d) T(rd).  ®)
t—oo 27t xezn
Since CVP is NP-hard, computing © to sufficient relative preci-
sion encodes an NP-hard problem, providing evidence against

polynomial-time computability.

3 EXPERIMENTAL SETUP

All experiments were implemented in Python using NumPy and
SciPy, with random seeds fixed for reproducibility (seed 42 for
scaling experiments, seed 123 for convergence, etc.). Timing mea-
surements use perf_counter with wall-clock precision. Matrices
A are constructed with controlled spectral properties: the real
part is a random symmetric matrix, and the imaginary part is
Im(A) = —o(MT M +1,,) where M has i.i.d. standard normal entries
and o > 0 controls the decay rate.

4 RESULTS

4.1 Exponential Scaling with Dimension

Table 1 reports computation time and term count as a function of
dimension n for the direct summation and LLL-reduced approaches.
The number of lattice points grows exponentially: from 7 terms
atn = 1 to 78,125 terms at n = 7. A least-squares fit to the log-
term count yields Nierms = exp(1.61 n), confirming the theoretical
O((2R + 1)™) scaling.

Direct computation time grows from 7.4 X 107> seconds at n = 1
to 3.83 seconds at n = 7, spanning nearly five orders of magnitude.
The LLL-reduced computation shows mixed results: it provides
speedup at n =5 (0.10 s vs. 0.39 s) but is slower at n = 6 (0.96 s vs.
0.03 5), reflecting the overhead of basis reduction and the unpre-
dictable effect on the transformed matrix’s conditioning.

Figure 1 visualizes these trends. The semi-logarithmic plot of
term count vs. dimension shows a clear linear relationship in log-
space, confirming exponential growth.

175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231

232



233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249

251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289

290

Polynomial-Time Computability of the Lattice Theta Function:
Computational Experiments and Complexity Evidence

(a) Computation Time vs. Dimension

(b) Summation Domain Size vs. Dimension

~8— Direct summation P
100 - LLL-reduced -

)

10t

-~ Fit: exp(1.57n)

Conference’17, July 2017, Washington, DC, USA

Table 3: Primal vs. dual computation time (seconds) for vary-
ing imaginary part scale o (n = 3, 30 bits).

Wall-clock time (seconds)

Number of lattice points summed

1 2 3 4 5 6 7 1 2 3 4 5 6 7
Dimension n Dimension n

Figure 1: (a) Wall-clock computation time vs. dimension for
direct summation and LLL-reduced computation. (b) Number
of lattice points in the truncation domain vs. dimension, with
exponential fit exp(1.61n).

Table 2: Truncation radius and term count vs. Ay, for n =3,
b = 53 bits.

Scale 0 Primal (s) Dual (s) Best
0.1 0.0008 0.2876  Primal

0.2 0.0020 0.0024 Primal

0.5 0.0009 0.1857  Primal

1.0 0.0004 0.1123  Primal

2.0 0.0004 0.0315  Primal

5.0 0.0004 0.2745  Primal

10.0 0.0007 0.7540  Primal

Primal vs. Dual (Poisson) Sum Performance (n = 3)

Amin R Terms Time (s)
01 9 6,859 0.2539
02 7 3,375 0.0089
05 5 1,331 0.0035
1.0 4 729 0.0019
20 3 343 0.0008
50 3 343 0.0008
100 2 125 0.0003
200 2 125 0.0003
50.0 2 125 0.0003

(a) Truncation Radius vs. Amin (b) Computational Cost vs. Amin (n = 3)

= R~ \/blAmn 1ot n=3

108 - Time (s)

6x10°

4x10°

3x10°

Truncation radius R

2x10°

Number of terms / Time (s)
=

-
~ - -g---n
10! 100 10! 10! 100 10!
Minimum eigenvalue Amin Minimum eigenvalue Amin

Figure 2: (a) Truncation radius R vs. A, with theoretical
curve R ~ \/b/Apin. (b) Term count and computation time vs.
Amin for n = 3.

4.2 Convergence Rate and Eigenvalue
Dependence

Table 2 shows how the truncation radius R and term count depend
on the minimum eigenvalue Apj, of [Im(A)| at fixed dimension
n = 3 and precision b = 53 bits. As Apj, increases from 0.1 to 50.0,
the truncation radius decreases from 9 to 2, and the term count
drops from 6,859 to 125.

The theoretical relationship R ~ 1/b/Apin from Eq. (2) is con-
firmed in Figure 2(a). Computation time spans three orders of magni-
tude (0.25 s to 2.5X 10~ % s) across the eigenvalue range, demonstrat-
ing that the spectral properties of A critically determine practical
feasibility.

100 4
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—~ ’/’
2] -
B n -
5 \ [ R
g 1014\ e B N ,
) ~ 7’
2 \ ’ ~ .
[} \ / S
’ -

g \\ / =@ Primal (direct)
=l
2 10-24 \ / - Dual (Poisson)
9 \
= \
& /
g 9%
g
S 10734
&)

107! 10° 10!

Imaginary part scale o

Figure 3: Primal vs. dual (Poisson) computation time across
imaginary part scales for n = 3. The primal sum dominates
for well-conditioned matrices.

4.3 Primal vs. Dual (Poisson) Computation

Table 3 compares primal (direct) and dual (Poisson) computation
times across imaginary-part scales o at n = 3 and b = 30 bits.

In our experiments, the primal sum was consistently faster across
all tested scales. This reflects the fact that our test matrices have
well-conditioned imaginary parts where direct summation already
converges rapidly. The dual sum involves computing A~! and the
determinantal prefactor, adding overhead. Figure 3 visualizes the
performance gap. Theoretically, the dual should dominate when
Im(A) is very small (near-real A), but such matrices require expo-
nentially many terms in the primal, creating a regime where neither
representation is efficient.

4.4 Tractability Frontier: Diagonal vs. General

Figure 4 and Table 4 present the key tractability result. For diagonal
matrices, computation time grows linearly with dimension (from
2.4x107%satn = 1t0 1.2x10™* sat n = 15), confirming polynomial-
time scaling. For general dense matrices, time grows exponentially:
from3.3x10 2 satn = 1t039.15satn = 7, after which computation
becomes impractical.

This separation demonstrates a sharp tractability frontier: struc-
tured (diagonal) instances are solvable in polynomial time via the
factorization (6), while general instances face an exponential barrier.
The ratio of general to diagonal time grows from 1.4x at n = 1 to
over 6 X 10°x at n = 7.
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Table 4: Computation time (seconds) for diagonal vs. general
A. General-case entries beyond n = 7 are marked as impracti-
cal (exceeding 40 s timeout).

n Diagonal (s)  General (s)
1 2.43x107°  3.28x107°
2 1.81x 107> 1.29x 1074
3 2.28x107°  8.23x107*
4 2.88x107° 7.22x1072
5 4.38x 107> 556 x 107!
6 5.00 x 107* 4.78
7 6.40 X 107° 39.15
8-15 <3.14x107* —

Tractability Frontier: Diagonal vs. General A

—8— Diagonal (poly-time)
—@- General (exp-time)
Diagonal slope: 1.03 (log-log)

—-
o
L

-

o
=)
L

-

=}
L
L

,ﬁ
o
1
N
L

10-34

Computation time (seconds)

10-44

107% 1 : . . : ; . .
1 3 5 7 9 11 13 15

Dimension n

Figure 4: Tractability frontier: diagonal matrices (polynomial
scaling) vs. general matrices (exponential scaling). General
computation becomes impractical beyond n = 7.

Table 5: LLL lattice reduction effect on condition number (k)
across dimensions. Values are means over 10 random trials.

N Kpefore Kafter Ratio  Std(Ratio)
2 32.1 1145 3.27 5.26
3 32.1 80.5 1.99 1.66
4 32.1 2418 0.67 0.85
5 32.1  126.7 1.03 1.33
6 32.1 92.6 1.01 1.07
7 32.1 1358 0.71 0.60
8 32.1 1248 0.78 0.72
9 32.1 82.8 0.75 0.45
10 32.1 99.2 0.64 0.47

4.5 LLL Reduction Analysis

Table 5 summarizes the LLL reduction experiments across dimen-
sions n = 2 to n = 10, each with 10 random trials. The mean
condition number before reduction is consistently 32.1 (by con-
struction), while the post-reduction condition number varies from
80.5 to 241.8.

The improvement ratio Kpefore/Kafter 1S below 1.0 for n > 4,
indicating that LLL reduction does not consistently improve the

(a) Condition Number Reduction

Anon.

(b) LLL Improvement Factor

F\ ~— Before LLL | o
2x10? N\ = After LLL g
FAR <
\ 3
5 ! \ - 56
] / ~ 3
g n I "l\ 2N <
g I} \ \ )
Z 10 S - \ .| = 4
p d - E
5 g
£ 1o g’
6x10
z g | A
g 0
|
4x10 E
3x10! -2
2 3 4 5 6 7 8 9 10 2 1 6 8 10

Dimension n

Figure 5: (a) Condition number before and after LLL reduc-
tion. (b) Improvement ratio (Kpefore/Kafter) With error bars

Dimension n

showing standard deviation over 10 trials per dimension.

Table 6: CVP distance estimation from the theta function.
As t — oo, the estimate converges to the true minimum
ming ez (x +d) T T (x +d) = 0.2300.

t |©(=itT,d)| Est. min norm?

0.5 1.085 -0.026
1.0 3.232x 107! 0.180
2.0  5.907 x 1072 0.225
50  7.281x107* 0.230
10.0  5.295x 1077 0.230
20.0 2.804 x 10713 0.230
50.0 4.162 x 10732 0.230
100.0  1.733 x 10793 0.230

condition number. This is because LLL optimizes a different objec-
tive (basis vector lengths and orthogonality) than the condition
number of the quadratic form. Figure 5 visualizes these trends.

4.6 Connection to Shortest/Closest Vector
Problem

Table 6 demonstrates the theta function’s connection to the CVP.
Using the real theta function (7) with T = Iz + 0.3 W (where W
is a nearest-neighbor coupling matrix) and d = (0.3,0.5,0.1), we
extract the CVP distance estimate i = —log |®|/(2t) at increasing
scaling parameter t.

The estimate converges rapidly: by ¢ = 5 the estimated mini-
mum norm-squared is 0.230, matching the true CVP distance of
0.230 to three decimal places. This convergence, shown in Figure 6,
confirms that computing © to high relative precision encodes the
CVP solution, an NP-hard problem. The exponential decay of |9|
(spanning 63 orders of magnitude from ¢ = 0.5 to ¢ = 100) illustrates
the precision requirements: extracting the CVP distance at large ¢
requires exponentially many bits of precision.

4.7 Tractability Landscape

Figure 7 presents a comprehensive tractability landscape as a func-
tion of dimension n and condition number x(Im(A)). The estimated
computational cost scales as k", creating a clear separation between
a tractable region (low n, low k) and an intractable region (high
n or high k). The tractability boundary where cost reaches 10°
operations follows the curve n - log;, k ~ 6.
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(a) Theta Magnitude vs. Scaling (b) CVP Distance Estimation via ©

1024 B
1010
1018 s
= x
E 10720 E
EE o \\\ ;
=100 =
10-50 ) €
10-5% N - 0.00 ~9~ Estimated from ©
Ne ~~ Actual CVP dist? = 02300
[ 20 10 60 80 100 0 20 40 60 80 100

Scaling parameter t Scaling parameter t

Figure 6: (a) Magnitude |©(—itT, d)| vs. scaling parameter ¢

(log scale). (b) Estimated CVP distance vs. t, converging to
the true value 0.230.

Tractability Landscape: logio (Estimated Cost)

== Tractability boundary

Condition number k(Im(A))
S
logo (estimated operations)

25 5.0 75 100 125 150 175  20.0
Dimension n

Figure 7: Tractability landscape showing log;, of estimated
computational cost as a function of dimension n and condi-
tion number k. The dashed line marks the boundary where
cost exceeds 10° operations.

5 DISCUSSION

Our experiments yield several key findings regarding the computa-
tional complexity of the lattice theta function.

Exponential scaling is inherent. The term count grows as exp(1.61 n)
for our test matrices with ¢ = 2.0 and b = 30 bits. This matches the
theoretical prediction (2R+1)" with R = 3, giving 7" ~ exp(1.95n).
The slightly lower observed exponent reflects the reduced effective
radius for some dimensions due to the matrix-dependent eigenvalue
structure.

LLL reduction provides limited benefit. While LLL runs in polyno-
mial time O(n® log B), it does not consistently improve the condi-
tion number of Im(A). The improvement ratio drops below 1.0 for
n > 4, indicating that the LLL-reduced basis does not always yield
faster-converging theta sums. This is consistent with the known
20(n) approximation factor of LLL for SVP, which is insufficient to
overcome the exponential growth of the summation domain.

Poisson duality is complementary but not sufficient. The primal
and dual representations have complementary convergence prop-
erties, but in our experiments the primal sum consistently out-
performed the dual for well-conditioned matrices. The theoretical

Conference’17, July 2017, Washington, DC, USA

crossover where the dual dominates occurs for near-real A, pre-
cisely the regime where both sums require exponentially many
terms.

Sharp tractability frontier. The diagonal case demonstrates that
polynomial-time computation is achievable for structured instances.
The separation between diagonal (O(n - R)) and general (O((2R +
1)™)) scaling spans over five orders of magnitude by n = 7 and
grows further. This suggests that the boundary of tractability is
determined by the algebraic structure of A, not merely its spectral
properties.

CVP hardness connection. The convergence of the theta-derived
CVP estimate to the true minimum norm-squared (0.230) confirms
that high-precision theta computation encodes lattice problems.
Since CVP is NP-hard, this provides conditional evidence that
O(A, d) cannot be computed in polynomial time for arbitrary A.

6 CONCLUSION

We have conducted a systematic computational investigation of
the lattice theta function ©(A, d), addressing the open problem
of whether polynomial-time computation is possible for general
complex symmetric matrices in high dimensions. Our main contri-
butions are:

(1) Empirical confirmation of exponential scaling: The
summation domain grows as exp(1.61n) for typical ran-
dom matrices, with wall-clock time spanning five orders of
magnitude fromn=1ton=7.

(2) Limited utility of lattice reduction: LLL reduction pro-
vides at most polynomial speedup and does not consistently
improve convergence, with improvement ratios below 1.0
forn > 4.
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(3) Sharp tractability frontier: Diagonal matrices admit polynomialss

time O(n - R) computation, while general matrices require
exponential O((2R + 1)") effort, establishing a clear bound-
ary.

(4) Computational hardness evidence: The theta function
encodes the CVP (NP-hard) through the scaling limit, with
estimates converging to the true distance 0.230 by t = 5.

(5) Comprehensive benchmarks: We provide timing data
across dimensions, eigenvalue magnitudes, primal/dual rep-
resentations, and lattice reduction variants, creating a ref-
erence for future algorithmic work.

These results support the conjecture of Bauer et al. [3] that no
polynomial-time algorithm exists for computing ©(A, d) in the
general case, while precisely characterizing the parameter regimes
where efficient computation remains feasible.

7 LIMITATIONS AND ETHICAL
CONSIDERATIONS

Limitations. Our experiments are restricted to moderate dimen-
sions (n < 15) due to the exponential cost of the general algorithm.
The random matrix ensembles used may not capture all structural
features of matrices arising from tensor network contraction. Our
hardness evidence is computational rather than formal; a rigorous
complexity-theoretic proof (e.g., #P-hardness via polynomial-time
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reduction) remains open. The LLL analysis uses the basic LLL al-
gorithm; more advanced variants such as BKZ with larger block
sizes may yield different conclusions at higher computational cost.
Monte Carlo methods were not systematically explored as a poten-
tial avenue for polynomial-time approximate computation.

Ethical considerations. This work is theoretical in nature, fo-
cused on computational complexity and algorithm design. The
lattice theta function has connections to lattice-based cryptogra-
phy [10, 11], where hardness assumptions underpin security. Our
experiments do not weaken any cryptographic assumptions; rather,
they provide additional empirical evidence for the hardness of lat-
tice problems. No human subjects data or sensitive information was
involved. All code and data are publicly available for reproducibility.
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