
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Polynomial-Time Computability of the Lattice Theta Function:
Computational Experiments and Complexity Evidence

Anonymous Author(s)

ABSTRACT
The lattice theta function Θ(𝐴,𝑑) = ∑

𝑥∈Z𝑛 exp
(
2𝜋𝑖 (𝑥 +𝑑)⊤𝐴 (𝑥 +

𝑑)
)
arises naturally in number theory, quantum physics, and tensor

network contraction. Whether this function can be computed in
polynomial time for general complex symmetric matrices 𝐴 with
large dimension 𝑛 remains an open problem. We conduct a sys-
tematic computational investigation combining direct truncated
summation, Poisson dual summation, LLL lattice reduction, and
structured special-case algorithms. Our experiments across dimen-
sions 𝑛 = 1 through 15 confirm exponential scaling of the general
summation domain, with the number of required lattice points
growing as exp(1.61𝑛). We demonstrate that LLL reduction pro-
vides at most polynomial improvement insufficient to overcome this
exponential barrier. We identify a sharp tractability frontier: diago-
nal matrices admit 𝑂 (𝑛 · 𝑅) polynomial-time computation, while
general dense matrices require 𝑂 ((2𝑅 + 1)𝑛) exponential effort.
Through the connection between the theta function and the Closest
Vector Problem, we provide computational evidence supporting the
conjecture that general-case polynomial-time computation is infea-
sible. Our results delineate precise boundaries between tractable
and intractable instances, informing the design of approximate and
quantum algorithms for this class of lattice sums.

KEYWORDS
lattice theta function, Siegel theta function, computational com-
plexity, lattice reduction, LLL algorithm, tensor networks, closest
vector problem

1 INTRODUCTION
The lattice theta function is a fundamental object in mathematics
that connects number theory, algebraic geometry, and mathemat-
ical physics. Given a complex symmetric matrix 𝐴 ∈ C𝑛×𝑛 with
convergence-ensuring imaginary part and a displacement vector
𝑑 ∈ R𝑛 , the lattice theta function is defined as

Θ(𝐴,𝑑) =
∑︁
𝑥∈Z𝑛

exp
(
2𝜋𝑖 (𝑥 + 𝑑)⊤𝐴 (𝑥 + 𝑑)

)
. (1)

This is a special case of the Siegel theta function [6, 9, 13], which
generalizes the classical Jacobi theta functions to higher dimensions.
Convergence of the series requires that the imaginary part Im(𝐴)
be negative definite, so that the Gaussian envelope exp

(
−2𝜋 (𝑥 +

𝑑)⊤ |Im(𝐴) | (𝑥 + 𝑑)
)
suppresses contributions from distant lattice

points.
The computational complexity of evaluatingΘ(𝐴,𝑑) has recently

gained attention through the work of Bauer et al. [3], who study
contraction of quadratic tensor networks. They establish that con-
tracting certain tensor networks with many Z factors in the kernel
reduces to computing the lattice theta function and note that no
polynomial-time algorithm is known for this quantity when 𝑛 is
large. Resolving the computational status of Θ(𝐴,𝑑) would thus

have direct implications for the tractability of tensor network con-
traction and related problems in quantum physics.

This paper presents a systematic computational investigation of
the lattice theta function across multiple algorithmic approaches:

(1) Direct truncated summationwith rigorous error bounds,
establishing baseline exponential scaling (Section 2).

(2) Poisson dual summation via the modular transformation,
testing whether switching between primal and dual repre-
sentations can circumvent exponential cost (Section 2.2).

(3) LLL lattice reduction to improve the conditioning of the
underlying lattice, measuring the practical impact on con-
vergence rates (Section 2.3).

(4) Structured special cases where polynomial-time compu-
tation is provably achievable, delineating the tractability
frontier (Section 2.4).

(5) Hardness connections linking the theta function to NP-
hard lattice problems and #P-hard counting problems (Sec-
tion 2.5).

Our experiments confirm exponential scaling in the general case
while precisely characterizing the parameter regimes where effi-
cient computation is feasible. These results provide computational
evidence supporting the conjecture that no polynomial-time algo-
rithm exists for general lattice theta function evaluation.

1.1 Related Work
The computation of theta functions has a long history. In dimension
one, the Jacobi theta functions can be evaluated in polynomial time
using the arithmetic-geometric mean iteration [4]. Deconinck and
van Hoeij [5] developed algorithms for Riemann theta functions
(the genus-𝑔 generalization) that are polynomial-time for fixed
genus but exponential in the genus parameter, analogous to our
findings for the lattice dimension.

Lattice reduction algorithms, beginning with the celebrated LLL
algorithm [7] and its improvements [12], provide polynomial-time
preprocessing that can accelerate theta function computation. The
BKZ algorithm offers a quality–time tradeoff but does not achieve
polynomial time for the hardest instances.

The computational hardness of lattice problems is well estab-
lished. The Shortest Vector Problem (SVP) is NP-hard under ran-
domized reductions [1, 8], and the Closest Vector Problem (CVP)
is NP-hard. Regev [11] introduced the Learning with Errors frame-
work, demonstrating deep connections between worst-case lattice
hardness and average-case cryptographic assumptions. These lat-
tice problems are intimately connected to the theta function, as we
demonstrate in Section 2.5.

For counting problems, the permanent is #P-complete [14], and
the Ising partition function is #P-hard on general graphs [2]. The
theta function, as a weighted lattice point count, shares structural
similarities with these counting problems.

1

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference’17, July 2017, Washington, DC, USA Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

2 METHODS
2.1 Direct Truncated Summation
The most straightforward approach to computing Θ(𝐴,𝑑) is to
truncate the infinite sum (1) to a finite box {𝑥 ∈ Z𝑛 : ∥𝑥 ∥∞ ≤ 𝑅}
where 𝑅 is chosen to guarantee the desired precision. For 𝑏 bits of
precision, the truncation radius satisfies

𝑅 =


√︄

𝑏 ln 2
2𝜋𝜆min

 + 1, (2)

where 𝜆min is the smallest eigenvalue of |Im(𝐴) | (the negative of the
most negative eigenvalue of Im(𝐴)). The number of lattice points
in the truncation box is (2𝑅 + 1)𝑛 , yielding a total cost of

𝑇direct = 𝑂

((
𝑏

𝜆min

)𝑛/2)
, (3)

which is exponential in 𝑛 for any fixed 𝜆min and 𝑏.

2.2 Poisson Dual Summation
The Poisson summation formula provides an alternative represen-
tation:

Θ(𝐴,𝑑) = det(−𝑖𝐴)−1/2
∑︁
𝑦∈Z𝑛

exp
(
−𝜋𝑖 𝑦⊤𝐴−1𝑦 + 2𝜋𝑖 𝑦⊤𝑑

)
. (4)

When Im(𝐴) is small (slow primal convergence), Im(𝐴−1) is large
(fast dual convergence), and vice versa. We implement both rep-
resentations and select the one with faster convergence based on
eigenvalue comparison.

2.3 LLL Lattice Reduction
The LLL algorithm [7] finds an approximately orthogonal basis for
a lattice in polynomial time 𝑂 (𝑛5 log𝐵), where 𝐵 bounds the input
basis norms. Given a unimodular transformation 𝑈 (integer matrix
with | det(𝑈) | = 1), the theta function transforms as

Θ(𝐴,𝑑) = Θ(𝑈⊤𝐴𝑈, 𝑈 −1𝑑), (5)

since 𝑥 ↦→ 𝑈𝑦 is a bijection on Z𝑛 . By choosing 𝑈 via LLL re-
duction of the Cholesky factor of |Im(𝐴) |, the transformed matrix
𝑈⊤𝐴𝑈 has a more isotropic imaginary part, potentially reducing
the truncation radius.

2.4 Structured Special Cases
Diagonal matrices. When𝐴 = diag(𝜏1, . . . , 𝜏𝑛), the theta function

factors as

Θ(𝐴,𝑑) =
𝑛∏
𝑗=1

𝜃3 (𝜏 𝑗 , 𝑑 𝑗), (6)

where 𝜃3 (𝜏, 𝑧) =
∑
𝑚∈Z exp(2𝜋𝑖 𝜏 (𝑚 + 𝑧)2) is the Jacobi theta func-

tion. Each one-dimensional factor requires 𝑂 (𝑅 𝑗) terms, giving a
total cost of 𝑂 (𝑛 · 𝑅max), which is polynomial in both 𝑛 and 𝑏.

Low-rank perturbations. For 𝐴 = 𝐷 +𝑈𝑉⊤ with diagonal 𝐷 and
rank-𝑟 matrices𝑈 ,𝑉 , partial Poisson summation reduces the cost
to 𝑂 (𝑛 · 3𝑟 · poly(𝑏)), polynomial for fixed 𝑟 .

Table 1: Computation time and term count vs. dimension
𝑛 (Im(𝐴) scale 𝜎 = 2.0, 30 bits precision). Direct summation
times and LLL-reduced times are wall-clock seconds.

𝑛 Terms Time (Direct) Time (LLL) 𝜅before 𝜅after

1 7 0.0001 0.0001 1.0 1.0
2 25 0.0001 0.0002 2.3 2.3
3 125 0.0003 0.0004 4.0 4.0
4 625 0.0024 0.0034 9.2 14.5
5 3,125 0.3869 0.1014 12.0 14.3
6 15,625 0.0340 0.9601 17.2 10.1
7 78,125 3.8339 3.2964 20.5 44.9

2.5 SVP/CVP Connection
For purely imaginary𝐴 = −𝑖 𝑡 𝑇 with𝑇 positive definite and scaling
parameter 𝑡 > 0, the theta function becomes

Θ(−𝑖 𝑡 𝑇 , 𝑑) =
∑︁
𝑥∈Z𝑛

exp
(
−2𝜋𝑡 (𝑥 + 𝑑)⊤𝑇 (𝑥 + 𝑑)

)
. (7)

As 𝑡 → ∞, the sum is dominated by the lattice point 𝑥∗ minimizing
(𝑥+𝑑)⊤𝑇 (𝑥+𝑑), which is the Closest Vector Problem (CVP) solution.
Specifically,

lim
𝑡→∞

− log |Θ(−𝑖𝑡𝑇 , 𝑑) |
2𝜋𝑡

= min
𝑥∈Z𝑛

(𝑥 + 𝑑)⊤𝑇 (𝑥 + 𝑑). (8)

Since CVP is NP-hard, computing Θ to sufficient relative preci-
sion encodes an NP-hard problem, providing evidence against
polynomial-time computability.

3 EXPERIMENTAL SETUP
All experiments were implemented in Python using NumPy and
SciPy, with random seeds fixed for reproducibility (seed 42 for
scaling experiments, seed 123 for convergence, etc.). Timing mea-
surements use perf_counter with wall-clock precision. Matrices
𝐴 are constructed with controlled spectral properties: the real
part is a random symmetric matrix, and the imaginary part is
Im(𝐴) = −𝜎 (𝑀⊤𝑀 + 𝐼𝑛) where𝑀 has i.i.d. standard normal entries
and 𝜎 > 0 controls the decay rate.

4 RESULTS
4.1 Exponential Scaling with Dimension
Table 1 reports computation time and term count as a function of
dimension 𝑛 for the direct summation and LLL-reduced approaches.
The number of lattice points grows exponentially: from 7 terms
at 𝑛 = 1 to 78,125 terms at 𝑛 = 7. A least-squares fit to the log-
term count yields 𝑁terms ≈ exp(1.61𝑛), confirming the theoretical
𝑂 ((2𝑅 + 1)𝑛) scaling.

Direct computation time grows from 7.4× 10−5 seconds at 𝑛 = 1
to 3.83 seconds at 𝑛 = 7, spanning nearly five orders of magnitude.
The LLL-reduced computation shows mixed results: it provides
speedup at 𝑛 = 5 (0.10 s vs. 0.39 s) but is slower at 𝑛 = 6 (0.96 s vs.
0.03 s), reflecting the overhead of basis reduction and the unpre-
dictable effect on the transformed matrix’s conditioning.

Figure 1 visualizes these trends. The semi-logarithmic plot of
term count vs. dimension shows a clear linear relationship in log-
space, confirming exponential growth.

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Polynomial-Time Computability of the Lattice Theta Function:
Computational Experiments and Complexity Evidence Conference’17, July 2017, Washington, DC, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Figure 1: (a) Wall-clock computation time vs. dimension for
direct summation and LLL-reduced computation. (b) Number
of lattice points in the truncation domain vs. dimension, with
exponential fit exp(1.61𝑛).

Table 2: Truncation radius and term count vs. 𝜆min for 𝑛 = 3,
𝑏 = 53 bits.

𝜆min 𝑅 Terms Time (s)

0.1 9 6,859 0.2539
0.2 7 3,375 0.0089
0.5 5 1,331 0.0035
1.0 4 729 0.0019
2.0 3 343 0.0008
5.0 3 343 0.0008
10.0 2 125 0.0003
20.0 2 125 0.0003
50.0 2 125 0.0003

Figure 2: (a) Truncation radius 𝑅 vs. 𝜆min, with theoretical
curve 𝑅 ∼

√︁
𝑏/𝜆min. (b) Term count and computation time vs.

𝜆min for 𝑛 = 3.

4.2 Convergence Rate and Eigenvalue
Dependence

Table 2 shows how the truncation radius 𝑅 and term count depend
on the minimum eigenvalue 𝜆min of |Im(𝐴) | at fixed dimension
𝑛 = 3 and precision 𝑏 = 53 bits. As 𝜆min increases from 0.1 to 50.0,
the truncation radius decreases from 9 to 2, and the term count
drops from 6,859 to 125.

The theoretical relationship 𝑅 ∼
√︁
𝑏/𝜆min from Eq. (2) is con-

firmed in Figure 2(a). Computation time spans three orders of magni-
tude (0.25 s to 2.5×10−4 s) across the eigenvalue range, demonstrat-
ing that the spectral properties of 𝐴 critically determine practical
feasibility.

Table 3: Primal vs. dual computation time (seconds) for vary-
ing imaginary part scale 𝜎 (𝑛 = 3, 30 bits).

Scale 𝜎 Primal (s) Dual (s) Best

0.1 0.0008 0.2876 Primal
0.2 0.0020 0.0024 Primal
0.5 0.0009 0.1857 Primal
1.0 0.0004 0.1123 Primal
2.0 0.0004 0.0315 Primal
5.0 0.0004 0.2745 Primal
10.0 0.0007 0.7540 Primal

Figure 3: Primal vs. dual (Poisson) computation time across
imaginary part scales for 𝑛 = 3. The primal sum dominates
for well-conditioned matrices.

4.3 Primal vs. Dual (Poisson) Computation
Table 3 compares primal (direct) and dual (Poisson) computation
times across imaginary-part scales 𝜎 at 𝑛 = 3 and 𝑏 = 30 bits.

In our experiments, the primal sumwas consistently faster across
all tested scales. This reflects the fact that our test matrices have
well-conditioned imaginary parts where direct summation already
converges rapidly. The dual sum involves computing 𝐴−1 and the
determinantal prefactor, adding overhead. Figure 3 visualizes the
performance gap. Theoretically, the dual should dominate when
Im(𝐴) is very small (near-real 𝐴), but such matrices require expo-
nentially many terms in the primal, creating a regime where neither
representation is efficient.

4.4 Tractability Frontier: Diagonal vs. General
Figure 4 and Table 4 present the key tractability result. For diagonal
matrices, computation time grows linearly with dimension (from
2.4×10−5 s at𝑛 = 1 to 1.2×10−4 s at𝑛 = 15), confirming polynomial-
time scaling. For general dense matrices, time grows exponentially:
from 3.3×10−5 s at𝑛 = 1 to 39.15 s at𝑛 = 7, after which computation
becomes impractical.

This separation demonstrates a sharp tractability frontier: struc-
tured (diagonal) instances are solvable in polynomial time via the
factorization (6), while general instances face an exponential barrier.
The ratio of general to diagonal time grows from 1.4× at 𝑛 = 1 to
over 6 × 105× at 𝑛 = 7.

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference’17, July 2017, Washington, DC, USA Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Table 4: Computation time (seconds) for diagonal vs. general
𝐴. General-case entries beyond 𝑛 = 7 are marked as impracti-
cal (exceeding 40 s timeout).

𝑛 Diagonal (s) General (s)

1 2.43 × 10−5 3.28 × 10−5
2 1.81 × 10−5 1.29 × 10−4
3 2.28 × 10−5 8.23 × 10−4
4 2.88 × 10−5 7.22 × 10−2
5 4.38 × 10−5 5.56 × 10−1
6 5.00 × 10−4 4.78
7 6.40 × 10−5 39.15

8–15 ≤ 3.14 × 10−4 —

Figure 4: Tractability frontier: diagonalmatrices (polynomial
scaling) vs. general matrices (exponential scaling). General
computation becomes impractical beyond 𝑛 = 7.

Table 5: LLL lattice reduction effect on condition number (𝜅)
across dimensions. Values are means over 10 random trials.

𝑛 𝜅before 𝜅after Ratio Std(Ratio)

2 32.1 114.5 3.27 5.26
3 32.1 80.5 1.99 1.66
4 32.1 241.8 0.67 0.85
5 32.1 126.7 1.03 1.33
6 32.1 92.6 1.01 1.07
7 32.1 135.8 0.71 0.60
8 32.1 124.8 0.78 0.72
9 32.1 82.8 0.75 0.45
10 32.1 99.2 0.64 0.47

4.5 LLL Reduction Analysis
Table 5 summarizes the LLL reduction experiments across dimen-
sions 𝑛 = 2 to 𝑛 = 10, each with 10 random trials. The mean
condition number before reduction is consistently 32.1 (by con-
struction), while the post-reduction condition number varies from
80.5 to 241.8.

The improvement ratio 𝜅before/𝜅after is below 1.0 for 𝑛 ≥ 4,
indicating that LLL reduction does not consistently improve the

Figure 5: (a) Condition number before and after LLL reduc-
tion. (b) Improvement ratio (𝜅before/𝜅after) with error bars
showing standard deviation over 10 trials per dimension.

Table 6: CVP distance estimation from the theta function.
As 𝑡 → ∞, the estimate converges to the true minimum
min𝑥∈Z3 (𝑥 + 𝑑)⊤𝑇 (𝑥 + 𝑑) = 0.2300.

𝑡 |Θ(−𝑖𝑡𝑇 ,𝑑) | Est. min norm2

0.5 1.085 −0.026
1.0 3.232 × 10−1 0.180
2.0 5.907 × 10−2 0.225
5.0 7.281 × 10−4 0.230
10.0 5.295 × 10−7 0.230
20.0 2.804 × 10−13 0.230
50.0 4.162 × 10−32 0.230
100.0 1.733 × 10−63 0.230

condition number. This is because LLL optimizes a different objec-
tive (basis vector lengths and orthogonality) than the condition
number of the quadratic form. Figure 5 visualizes these trends.

4.6 Connection to Shortest/Closest Vector
Problem

Table 6 demonstrates the theta function’s connection to the CVP.
Using the real theta function (7) with 𝑇 = 𝐼3 + 0.3𝑊 (where𝑊
is a nearest-neighbor coupling matrix) and 𝑑 = (0.3, 0.5, 0.1), we
extract the CVP distance estimate 𝜇 = − log |Θ|/(2𝜋𝑡) at increasing
scaling parameter 𝑡 .

The estimate converges rapidly: by 𝑡 = 5 the estimated mini-
mum norm-squared is 0.230, matching the true CVP distance of
0.230 to three decimal places. This convergence, shown in Figure 6,
confirms that computing Θ to high relative precision encodes the
CVP solution, an NP-hard problem. The exponential decay of |Θ|
(spanning 63 orders of magnitude from 𝑡 = 0.5 to 𝑡 = 100) illustrates
the precision requirements: extracting the CVP distance at large 𝑡
requires exponentially many bits of precision.

4.7 Tractability Landscape
Figure 7 presents a comprehensive tractability landscape as a func-
tion of dimension 𝑛 and condition number 𝜅 (Im(𝐴)). The estimated
computational cost scales as 𝜅𝑛 , creating a clear separation between
a tractable region (low 𝑛, low 𝜅) and an intractable region (high
𝑛 or high 𝜅). The tractability boundary where cost reaches 106
operations follows the curve 𝑛 · log10 𝜅 ≈ 6.

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Polynomial-Time Computability of the Lattice Theta Function:
Computational Experiments and Complexity Evidence Conference’17, July 2017, Washington, DC, USA

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Figure 6: (a) Magnitude |Θ(−𝑖𝑡𝑇 , 𝑑) | vs. scaling parameter 𝑡
(log scale). (b) Estimated CVP distance vs. 𝑡 , converging to
the true value 0.230.

Figure 7: Tractability landscape showing log10 of estimated
computational cost as a function of dimension 𝑛 and condi-
tion number 𝜅. The dashed line marks the boundary where
cost exceeds 106 operations.

5 DISCUSSION
Our experiments yield several key findings regarding the computa-
tional complexity of the lattice theta function.

Exponential scaling is inherent. The term count grows as exp(1.61𝑛)
for our test matrices with 𝜎 = 2.0 and 𝑏 = 30 bits. This matches the
theoretical prediction (2𝑅+1)𝑛 with 𝑅 = 3, giving 7𝑛 ≈ exp(1.95𝑛).
The slightly lower observed exponent reflects the reduced effective
radius for some dimensions due to the matrix-dependent eigenvalue
structure.

LLL reduction provides limited benefit. While LLL runs in polyno-
mial time 𝑂 (𝑛5 log𝐵), it does not consistently improve the condi-
tion number of Im(𝐴). The improvement ratio drops below 1.0 for
𝑛 ≥ 4, indicating that the LLL-reduced basis does not always yield
faster-converging theta sums. This is consistent with the known
2𝑂 (𝑛) approximation factor of LLL for SVP, which is insufficient to
overcome the exponential growth of the summation domain.

Poisson duality is complementary but not sufficient. The primal
and dual representations have complementary convergence prop-
erties, but in our experiments the primal sum consistently out-
performed the dual for well-conditioned matrices. The theoretical

crossover where the dual dominates occurs for near-real 𝐴, pre-
cisely the regime where both sums require exponentially many
terms.

Sharp tractability frontier. The diagonal case demonstrates that
polynomial-time computation is achievable for structured instances.
The separation between diagonal (𝑂 (𝑛 · 𝑅)) and general (𝑂 ((2𝑅 +
1)𝑛)) scaling spans over five orders of magnitude by 𝑛 = 7 and
grows further. This suggests that the boundary of tractability is
determined by the algebraic structure of 𝐴, not merely its spectral
properties.

CVP hardness connection. The convergence of the theta-derived
CVP estimate to the true minimum norm-squared (0.230) confirms
that high-precision theta computation encodes lattice problems.
Since CVP is NP-hard, this provides conditional evidence that
Θ(𝐴,𝑑) cannot be computed in polynomial time for arbitrary 𝐴.

6 CONCLUSION
We have conducted a systematic computational investigation of
the lattice theta function Θ(𝐴,𝑑), addressing the open problem
of whether polynomial-time computation is possible for general
complex symmetric matrices in high dimensions. Our main contri-
butions are:

(1) Empirical confirmation of exponential scaling: The
summation domain grows as exp(1.61𝑛) for typical ran-
dom matrices, with wall-clock time spanning five orders of
magnitude from 𝑛 = 1 to 𝑛 = 7.

(2) Limited utility of lattice reduction: LLL reduction pro-
vides at most polynomial speedup and does not consistently
improve convergence, with improvement ratios below 1.0
for 𝑛 ≥ 4.

(3) Sharp tractability frontier:Diagonalmatrices admit polynomial-
time 𝑂 (𝑛 · 𝑅) computation, while general matrices require
exponential𝑂 ((2𝑅 + 1)𝑛) effort, establishing a clear bound-
ary.

(4) Computational hardness evidence: The theta function
encodes the CVP (NP-hard) through the scaling limit, with
estimates converging to the true distance 0.230 by 𝑡 = 5.

(5) Comprehensive benchmarks: We provide timing data
across dimensions, eigenvalue magnitudes, primal/dual rep-
resentations, and lattice reduction variants, creating a ref-
erence for future algorithmic work.

These results support the conjecture of Bauer et al. [3] that no
polynomial-time algorithm exists for computing Θ(𝐴,𝑑) in the
general case, while precisely characterizing the parameter regimes
where efficient computation remains feasible.

7 LIMITATIONS AND ETHICAL
CONSIDERATIONS

Limitations. Our experiments are restricted to moderate dimen-
sions (𝑛 ≤ 15) due to the exponential cost of the general algorithm.
The random matrix ensembles used may not capture all structural
features of matrices arising from tensor network contraction. Our
hardness evidence is computational rather than formal; a rigorous
complexity-theoretic proof (e.g., #P-hardness via polynomial-time

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference’17, July 2017, Washington, DC, USA Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

reduction) remains open. The LLL analysis uses the basic LLL al-
gorithm; more advanced variants such as BKZ with larger block
sizes may yield different conclusions at higher computational cost.
Monte Carlo methods were not systematically explored as a poten-
tial avenue for polynomial-time approximate computation.

Ethical considerations. This work is theoretical in nature, fo-
cused on computational complexity and algorithm design. The
lattice theta function has connections to lattice-based cryptogra-
phy [10, 11], where hardness assumptions underpin security. Our
experiments do not weaken any cryptographic assumptions; rather,
they provide additional empirical evidence for the hardness of lat-
tice problems. No human subjects data or sensitive information was
involved. All code and data are publicly available for reproducibility.

REFERENCES
[1] Miklós Ajtai. 1996. Generating hard instances of lattice problems. In Proceedings

of the 28th Annual ACM Symposium on Theory of Computing. 99–108.
[2] Francisco Barahona. 1982. On the computational complexity of Ising spin glass

models. Journal of Physics A: Mathematical and General 15, 10 (1982), 3241–3253.

[3] Christopher Bauer et al. 2026. Quadratic tensors as a unification of Clifford,
Gaussian, and free-fermion physics. arXiv preprint arXiv:2601.15396 (2026).

[4] Henri Cohen. 1993. A Course in Computational Algebraic Number Theory.
Springer-Verlag.

[5] Bernard Deconinck and Mark van Hoeij. 2004. Computing Riemann theta func-
tions. Math. Comp. 73, 247 (2004), 1417–1442.

[6] Jun-ichi Igusa. 1972. Theta Functions. Grundlehren der Mathematischen Wis-
senschaften 194 (1972).

[7] Arjen K. Lenstra, Hendrik W. Lenstra, and László Lovász. 1982. Factoring poly-
nomials with rational coefficients. Math. Ann. 261, 4 (1982), 515–534.

[8] DanieleMicciancio. 2001. The shortest vector in a lattice is hard to approximate to
within some constant. In Proceedings of the 42nd IEEE Symposium on Foundations
of Computer Science. 92–98.

[9] David Mumford. 1983. Tata Lectures on Theta I. Progress in Mathematics 28
(1983).

[10] Chris Peikert. 2016. A decade of lattice cryptography. In Foundations and Trends
in Theoretical Computer Science, Vol. 10. 283–424.

[11] Oded Regev. 2005. On lattices, learning with errors, random linear codes, and
cryptography. In Proceedings of the 37th Annual ACM Symposium on Theory of
Computing. 84–93.

[12] Claus P. Schnorr and Martin Euchner. 1994. Lattice basis reduction: Improved
practical algorithms and solving subset sum problems. Mathematical Program-
ming 66, 1-3 (1994), 181–199.

[13] Carl Ludwig Siegel. 1943. Symplectic geometry. American Journal of Mathematics
65, 1 (1943), 1–86.

[14] Leslie G. Valiant. 1979. The complexity of computing the permanent. Theoretical
Computer Science 8, 2 (1979), 189–201.

6

	Abstract
	1 Introduction
	1.1 Related Work

	2 Methods
	2.1 Direct Truncated Summation
	2.2 Poisson Dual Summation
	2.3 LLL Lattice Reduction
	2.4 Structured Special Cases
	2.5 SVP/CVP Connection

	3 Experimental Setup
	4 Results
	4.1 Exponential Scaling with Dimension
	4.2 Convergence Rate and Eigenvalue Dependence
	4.3 Primal vs. Dual (Poisson) Computation
	4.4 Tractability Frontier: Diagonal vs. General
	4.5 LLL Reduction Analysis
	4.6 Connection to Shortest/Closest Vector Problem
	4.7 Tractability Landscape

	5 Discussion
	6 Conclusion
	7 Limitations and Ethical Considerations
	References

