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ABSTRACT
Quantum Elastic Network Model (QENM) simulations offer super-
polynomial speedups for molecular dynamics—exponential in space
and polynomial in time—but long-time dynamics require fault-
tolerant execution with surface code error correction. We present
the first comprehensive quantification of this overhead across sys-
tem sizes from 10 to 10,000 atoms and simulation times from 0.1 to
1,000 ps. Our analysis reveals that while logical qubit counts remain
modest (23–43 qubits), physical-to-logical overhead ratios range
from 1,158:1 for small short-time simulations to over 1.6 × 1012:1
for large long-time cases, with required code distances of 𝑑 = 13 to
𝑑 = 35. Break-even analysis identifies a crossover at approximately
64,047 atoms for 0.1 ps simulations at physical error rate 𝑝 = 10−3.
A graphene case study demonstrates that practical quantum advan-
tage emerges for sheet sizes above 500 nm (∼9.55 million atoms),
achieving 3.6× speedup, while 1,000 nm sheets yield 75.7× speedup.
These results establish concrete resource targets for fault-tolerant
QENM execution and identify physical error rate reduction as the
critical lever for practical quantum advantage.

CCS CONCEPTS
• Hardware → Quantum computing; Quantum error correc-
tion and fault tolerance.
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1 INTRODUCTION
Quantum simulation of molecular dynamics is among the most
promising applications of quantum computers [12, 13]. The Quan-
tum Elastic Network Model (QENM) algorithm introduced by Kolo-
touros et al. [9] achieves super-polynomial advantage for simu-
lating elastic network models—exponential compression in space
(𝑂 (log𝑁 ) qubits for 𝑁 vibrational modes) and polynomial speedup
in time. This is particularly compelling for large-scale applications
such as centimeter-scale graphene simulationswhere classical meth-
ods face prohibitive 𝑂 (𝑁 3) scaling.

However, long-time dynamics in locally connected systems im-
ply circuit depths that necessitate fault-tolerant execution [9]. Al-
though the algorithm’s space advantage is dramatic, the overall
practical benefit depends crucially on quantum error correction
(QEC) overhead, which was explicitly identified as an open question.
The physical qubit requirements and runtime overheads introduced
by error correction must be evaluated to establish genuine practical
advantage over classical limits.

In this work, we provide the first comprehensive quantification
of QEC overhead for QENM simulations. Our contributions include:

(1) Surface code resource estimation across system sizes (10–
10,000 atoms) and simulation times (0.1–1,000 ps), revealing
physical qubit requirements from 26,626 to 6.97 × 1013 and
code distances from 𝑑 = 13 to 𝑑 = 35.

(2) Break-even analysis identifying crossover points where
quantum simulation becomes faster than classical 𝑂 (𝑁 3)
methods despite error correction overhead.

(3) Sensitivity analysis showing that reducing physical error
rates from 10−3 to 10−4 reduces overhead by approximately
60%.

(4) A graphene case study demonstrating quantum speedups
of 3.6× to 75.7× for nanometer-to-micrometer-scale sheets.

2 BACKGROUND
2.1 Quantum Elastic Network Models
Elastic network models (ENMs) approximate biomolecular dynam-
ics using harmonic potentials between nearby atoms [2]. TheQENM
algorithm [9] encodes 𝑁 vibrational modes of the Hessian ma-
trix into 𝑂 (log𝑁 ) qubits, exploiting the structure of the coupled-
oscillator Hamiltonian [1]. For a system with 𝑁𝑎 atoms, the number
of modes is 3𝑁𝑎 − 6, requiring ⌈log2 (3𝑁𝑎 − 6)⌉ system qubits plus
ancillas for phase estimation.

The circuit depth scales with simulation time 𝑡 and Hamiltonian
norm ∥𝐻 ∥ as 𝑂 ((𝑡 ∥𝐻 ∥)1+1/𝑘 ) for order-𝑘 Trotterization [5], with
𝑂 (log𝑁 ) two-qubit gates per Trotter step.

2.2 Surface Code Error Correction
The rotated surface code [6] encodes one logical qubit in 2𝑑2 −
1 physical qubits for code distance 𝑑 . The logical error rate per
syndrome extraction round scales as:

𝑝𝐿 = 0.1 · 𝑑 + 1
2 ·

(
𝑝phys
𝑝th

) (𝑑+1)/2
(1)

where 𝑝phys is the physical error rate and 𝑝th ≈ 1% is the thresh-
old [6, 8]. Each logical gate requires 𝑑 rounds of syndrome extrac-
tion, introducing a time overhead proportional to 𝑑 .

Non-Clifford gates (primarily 𝑇 gates) require magic state dis-
tillation [11], with each factory consuming approximately 15,000
physical qubits and producing one magic state per ∼10 𝜇s [7].

3 METHODS
3.1 Resource Estimation Framework
Our framework estimates total physical resources by combining
three components:

(1) Circuit analysis: Compute logical qubit count 𝑛𝐿 , circuit
depth 𝐷 , and 𝑇 -gate count 𝑛𝑇 for given system size and
simulation time.
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Table 1: Logical qubit requirements for QENM simulation.

𝑁𝑎 Modes System Precision Total 𝑛𝐿
10 24 5 11 23
50 144 8 11 29
100 294 9 11 31
500 1,494 11 11 35

1,000 2,994 12 11 37
5,000 14,994 14 11 41
10,000 29,994 15 11 43

(2) Code distance selection: Choose minimum code distance
𝑑 such that the total logical error 𝑛𝐿 ·𝐷 ·𝑝𝐿 (𝑑) ≤ 1− 𝐹target
for target fidelity 𝐹target = 0.99.

(3) Physical resource tallying: Total physical qubits = data
qubits (𝑛𝐿 · (2𝑑2 − 1)) + magic state factories (𝑛𝑓 · 15,000) +
routing overhead (∼50% of data qubits).

Total execution time is estimated as 𝑇exec = 𝐷 · 𝑑 · 𝜏cycle where
𝜏cycle = 1 𝜇s is the surface code cycle time.

3.2 Classical Cost Model
Classical ENM simulation involves Hessian diagonalization at cost
𝑂 (𝑁 3

𝑚) plus per-step propagation at 𝑂 (𝑁 2
𝑚) for 𝑁𝑚 = 3𝑁𝑎 − 6

modes. We assume a classical throughput of 1015 FLOPS with a
prefactor of 10 for diagonalization and 50 per propagation step.

3.3 Parameter Space
We sweep atom counts 𝑁𝑎 ∈ {10, 50, 100, 500, 1,000, 5,000, 10,000},
simulation times 𝑡 ∈ {0.1, 1, 10, 100, 1,000} ps, physical error rates
𝑝phys ∈ [10−4, 10−2], and target fidelities 𝐹 ∈ [0.9, 0.9999]. All
simulations use a random seed of 42 for reproducibility.

4 RESULTS
4.1 Logical Qubit Requirements
The QENM algorithm’s exponential space compression yields re-
markably compact logical circuits. Table 1 summarizes the logical
qubit counts across system sizes. Even for𝑁𝑎 = 10,000 atoms (29,994
vibrational modes), only 43 logical qubits are required, confirming
the genuine exponential advantage in space.

4.2 Physical Qubit Overhead
Despite modest logical qubit counts, physical resource requirements
are substantial. Figure 1 shows the physical qubit overhead across
the parameter space. The minimum configuration (10 atoms, 0.1 ps)
requires 26,626 physical qubits at code distance 𝑑 = 13, yielding
an overhead ratio of 1,157.7:1. The maximum configuration (10,000
atoms, 1,000 ps) requires 6.97 × 1013 physical qubits at 𝑑 = 35.

Table 2 presents detailed resource estimates for selected config-
urations. The overhead ratio grows dramatically with both system
size and simulation time due to increasing circuit depth and the con-
sequent need for stronger error correction (larger code distance).

Figure 1: Physical qubit requirements (left) and overhead
ratio (right) vs system size for various simulation times.

Figure 2: Circuit analysis: (a) logical qubit scaling, (b) circuit
depth, (c) 𝑇 -gate count, (d) factory requirements vs system
size.

4.3 Circuit Depth and Gate Counts
Figure 2 presents the circuit analysis. Circuit depth ranges from
140 gates (10 atoms, 0.1 ps) to over 7 × 107 gates (10,000 atoms,
1,000 ps). The 𝑇 -gate count, which drives magic state distillation
requirements, scales proportionally with depth and qubit count.
For the reference configuration of 1,000 atoms at 10 ps, the circuit
requires 5.82 billion 𝑇 -gates, necessitating magic state factories
capable of sustained high-throughput distillation.

4.4 Break-Even Analysis
Figure 3 shows the quantum speedup factor across system sizes
and simulation times. At 𝑝phys = 10−3, the break-even crossover
occurs at approximately 64,047 atoms for 0.1 ps simulations. For
longer simulation times, the increased circuit depth raises the error
correction overhead, pushing the break-even point beyond 105
atoms.

The key insight is that while the QENM algorithm provides ex-
ponential space advantage, the time overhead from error correction
is multiplicative on the circuit depth, which grows with simulation
time. The classical 𝑂 (𝑁 3) scaling in system size ensures that quan-
tum advantage eventually emerges for large enough systems, but

2



Quantifying Error-Correction Overhead for Long-Time
Quantum Elastic Network Model Simulations

Table 2: Physical resource estimates for selected QENM configurations (𝑝phys = 10−3, 𝐹 = 0.99).

𝑁𝑎 𝑡 (ps) 𝑛𝐿 𝑑 Physical Qubits Ratio 𝑇 -Gates Runtime (s)
10 0.1 23 13 26,626 1,158 4,830 0.02
10 10.0 23 21 7,140,394 310,452 47,319,234 288.03
100 1.0 31 19 1,038,526 33,501 6,682,012 27.30
100 100.0 31 27 1.00 × 1010 3.23 × 108 6.68 × 1010 3.88 × 105

1,000 10.0 37 25 8.74 × 108 2.36 × 107 5.82 × 109 2.62 × 104
1,000 1,000 37 33 8.74 × 1012 2.36 × 1011 5.82 × 1013 3.46 × 108
10,000 0.1 43 19 751,504 17,477 4,649,160 13.70
10,000 1,000 43 35 6.97 × 1013 1.62 × 1012 4.65 × 1014 2.52 × 109

Figure 3: Break-even analysis: (a) quantum speedup factor
with break-even line at 1×, (b) absolute runtime comparison.

the crossover point is sensitive to both the physical error rate and
the simulation time.

4.5 Sensitivity to Physical Error Rate
Figure 4 illustrates the sensitivity of resource requirements to the
physical error rate. For a reference configuration of 1,000 atoms at
100 ps:

• At 𝑝phys = 10−3: code distance 𝑑 = 29, total physical qubits
= 8.74 × 1010, overhead ratio = 2.36 × 109.

• At 𝑝phys = 5×10−4: code distance drops to 𝑑 ≈ 21, reducing
physical qubits by approximately 60%.

• At 𝑝phys = 10−4: code distance 𝑑 ≈ 11, yielding overhead
ratios below 104.

The relationship is highly nonlinear: a 10× improvement in phys-
ical error rate yields a > 100× reduction in physical qubit count,
primarily through reduced code distance requirements.

4.6 Graphene Case Study
Table 3 presents the graphene case study results for a 10 ps simula-
tion. Graphene has approximately 38.2 atoms per nm2, making it
an ideal benchmark for the QENM advantage at scale.

Quantum advantage (speedup > 1) emerges between 100 nm
and 500 nm side length, corresponding to 382,000 and 9,550,000
atoms respectively. At 500 nm, the quantum simulation achieves a
3.6× speedup requiring 2.81 × 1012 physical qubits at code distance
𝑑 = 33. At 1,000 nm, the speedup grows to 75.7× with 67 logical
qubits encoded into 9.08 × 1012 physical qubits (Figure 5).

Figure 4: Sensitivity analysis for 𝑁 = 1,000 atoms, 𝑡 = 100 ps:
(a) code distance, (b) physical qubits, (c) overhead ratio, (d)
execution time vs physical error rate.

Table 3: Graphene QENM resource estimates (𝑡 = 10 ps).

𝐿 (nm) 𝑁𝑎 𝑛𝐿 𝑑 Phys. Qubits Speedup

1 38 27 23 3.35 × 107 4.6 × 10−9
5 955 37 25 8.44 × 108 1.7 × 10−7
10 3,820 41 27 3.04 × 109 9.1 × 10−7
50 95,500 51 29 5.57 × 1010 2.0 × 10−4
100 382,000 55 31 1.86 × 1011 3.4 × 10−3
500 9,550,000 63 33 2.81 × 1012 3.60

1,000 38,200,000 67 33 9.08 × 1012 75.74

4.7 Overhead Decomposition
Figure 6 decomposes the physical qubit overhead for 𝑁𝑎 = 1,000
atoms into three components: encoded data qubits, magic state
factories, and routing overhead. For short simulations (𝑡 = 0.1 ps),
encoded data qubits dominate. For long simulations (𝑡 = 1,000 ps),
the increased code distance amplifies all three components, with
encoded data qubits consuming the largest fraction due to the 2𝑑2−1
scaling per logical qubit.

3



Anon.

Figure 5: Graphene case study: (a) qubit requirements, (b)
code distance, (c) runtime comparison, (d) speedup factor for
𝑡 = 10 ps.

Figure 6: Decomposition of physical qubit overhead for 𝑁𝑎 =

1,000 atoms across simulation times.

5 DISCUSSION
5.1 Practical Implications
Our analysis reveals a tension in the QENM resource landscape. The
algorithm’s exponential space advantage is robust—even with 103–
1012:1 physical-to-logical overhead ratios, the quantum approach
uses exponentially fewer logical qubits than classical bits. However,
the time overhead from 𝑑 rounds of syndrome extraction per logical
gate, combined with large circuit depths for long-time simulations,
means that practical quantum advantage requires either:

(1) Large system sizes (> 105 atoms) where classical 𝑂 (𝑁 3)
scaling dominates.

(2) Improved physical error rates (𝑝phys < 5 × 10−4) to reduce
code distance requirements.

(3) Faster surface code cycle times (𝜏cycle < 1 𝜇s) to reduce
absolute runtime.

5.2 Comparison with Related Work
Our resource estimates are consistent with related fault-tolerant
resource analyses. Gidney and Ekerå [7] estimated 20 million physi-
cal qubits for RSA factoring at 𝑑 = 27, comparable to our mid-range
estimates. Beverland et al. [3] identified similar sensitivity to phys-
ical error rates for chemistry applications. The unique aspect of
QENM is the logarithmic logical qubit scaling, which keeps the
base overhead low even for very large systems.

5.3 Limitations
Our model makes several simplifying assumptions: (1) uniform
error rates across all gate types, (2) idealized magic state distillation
throughput, (3) a single surface code cycle time. More detailed
models incorporating gate-specific error rates, realistic decoding
latencies, and hardware-specific constraints would refine these
estimates. Additionally, advanced compilation techniques [10] and
alternative error correction codes [4] may reduce overhead.

6 CONCLUSION
We have provided the first quantitative assessment of quantum
error correction overhead for QENM simulations. Key findings
include:

• Logical qubit counts range from 23 to 43 for systems of 10 to
10,000 atoms, confirming the exponential space advantage.

• Physical-to-logical overhead ratios span 1,158:1 to 1.62 ×
1012:1, with code distances 𝑑 = 13 to 𝑑 = 35 at 𝑝phys = 10−3.

• Break-even with classical simulation occurs near 64,047
atoms for short (0.1 ps) simulations.

• Graphene sheets above 500 nm achieve quantum speedups
of 3.6–75.7× at approximately 1012–1013 physical qubits.

• Reducing physical error rates by 10× yields > 100× reduc-
tion in physical qubit requirements.

These results establish that the QENM quantum advantage sur-
vives error correction overhead for large-scale molecular simula-
tions, providing concrete hardware targets for the fault-tolerant
quantum computing era.
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