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ABSTRACT

The quantum measurement problem—how definite outcomes arise
from unitary evolution—remains one of the most fundamental
open questions in physics. We present a comprehensive compu-
tational investigation comparing five major resolution proposals:
environment-induced decoherence (Zurek), Continuous Sponta-
neous Localization (CSL/GRW), quantum Darwinism, gravitational
objective collapse (Penrose-Diosi), and the many-worlds interpreta-
tion (Everett). Through numerical simulations of Lindblad master
equations, stochastic Schrodinger equations, information-theoretic
measures, and Monte Carlo collapse dynamics, we provide a uni-
fied quantitative comparison across seven experimental modules
totaling over 32 seconds of computation. Key results include: a mea-
sured decoherence time of 7; = 0.4765 in natural units with final
purity 0.6552; CSL Born rule deviation of 0.019 across 1,000 Monte
Carlo trajectories; quantum Darwinism redundancy factor Rs = 5.0
with mean discord 0.0558; Penrose gravitational collapse threshold
mass 8.60 X 10~ 16 kg; many-worlds Born rule accuracy to 10~ for
p = 0.3; Leggett-Garg maximum violation K = 1.497; and maximum
Holevo quantity y = 1.0 bit. We develop a multi-criteria scoring
framework and find that experimental discrimination between col-
lapse and no-collapse models is achievable in the mesoscopic mass
range 10"1°-10710 kg, identifying this as the critical frontier for
resolving the measurement problem.
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1 INTRODUCTION

The quantum measurement problem stands as one of the deepest
unresolved questions in physics [16]. Standard quantum mechan-
ics describes physical systems through wavefunctions that evolve
unitarily via the Schrédinger equation, yet measurements appear
to produce single definite outcomes—a process not explained by
unitary dynamics alone. This tension between the linearity of quan-
tum evolution and the apparent nonlinearity of measurement has
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persisted since the earliest formulations of quantum theory and
remains central to our understanding of the quantum-to-classical
transition.

As Buscemi recently emphasized in a survey of quantum foun-
dations researchers, there remain no empirical hints or operational
motivations pointing toward a resolution [15]. This candid assess-
ment from a leading practitioner underscores the depth of the
problem and motivates the systematic computational investigation
we present here.

The measurement problem decomposes into three interrelated
challenges:

(i) The problem of outcomes—why measurements yield definite
results rather than leaving the apparatus in a superposition
entangled with the measured system;

(if) The preferred basis problem—what physical mechanism se-
lects the measurement basis (e.g., position rather than mo-
mentum) from the continuum of possible bases;

(iii) The Born rule problem—why outcome probabilities follow
the rule p = |[(1/|$)|? rather than some other function of
the quantum state.

Multiple theoretical frameworks have been proposed over the
past century, each addressing these sub-problems with varying
degrees of success and at different conceptual costs. In this work,
we undertake a systematic computational investigation of five ma-
jor proposals: environment-induced decoherence [18], Continuous
Spontaneous Localization (CSL) [2, 10], quantum Darwinism [19],
gravitational objective collapse [6, 14], and the many-worlds in-
terpretation [9, 17]. We complement these with analyses of weak
measurement statistics [1] and information-theoretic bounds [11].

Our contributions are:

(1) A unified computational framework implementing all five
measurement models with consistent parameterization, en-
abling direct quantitative comparison on common metrics;

(2) Quantitative comparison using seven experimental mod-
ules covering decoherence dynamics, stochastic collapse,
redundant information encoding, gravitational timescales,
branching structure, weak values, and quantum channel
capacities;

(3) A multi-criteria scoring system enabling systematic evalua-
tion across outcome resolution, Born rule derivation, basis
selection, and experimental testability, with explicit treat-
ment of parsimony and information conservation;

(4) Identification of the mesoscopic mass regime (10~1°~1071% kg)
as the critical experimental frontier where competing mod-
els make divergent predictions.

The remainder of this paper is organized as follows. Section 2
reviews the theoretical background of each model. Section 3 details
our computational methods. Section 4 presents results from all
seven experimental modules. Section 5 provides a comparative
discussion. Section 6 addresses limitations, and Section 7 concludes.
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2 BACKGROUND AND RELATED WORK
2.1 Environment-Induced Decoherence

Zurek’s decoherence program [18] demonstrates that interaction
with an environment selects preferred pointer states through a
process called environment-induced superselection (einselection),
destroying coherence between branches on timescales far shorter
than other dynamical scales. The Lindblad master equation gov-
erns this open-system dynamics, with decoherence rates scaling as
Yeft = y(27 + 1) where 7 is the thermal occupation number of the
environmental modes [12, 16].

The key insight of the decoherence program is that quantum co-
herence is not destroyed in principle but rather becomes delocalized
into system-environment correlations that are practically inacces-
sible. The reduced density matrix of the system evolves toward a
diagonal form in the pointer basis, making it operationally indis-
tinguishable from a classical mixture. However, the interpretation
of this mixture as representing genuine ignorance about definite
outcomes requires additional interpretive assumptions [16].

2.2 Collapse Models (CSL/GRW)

The GRW model [10] and its continuous extension CSL [2] modify
the Schrédinger equation with stochastic nonlinear terms causing
spontaneous localization in position space. The collapse rate for
N particles scales as A.g ~ AN (a/r)?, providing the amplification
mechanism that preserves microscopic coherence while collapsing
macroscopic superpositions on observable timescales.

The standard GRW parameters are A ~ 1071° s™! per nucleon

and ¢ ~ 1077 m. Current experimental bounds from non-interferometric

tests [4] and underground experiments [7] constrain but have not
excluded these values, leaving a significant portion of the theoreti-
cally motivated parameter space open for future tests.

2.3 Gravitational Collapse (Penrose-Didsi)

Penrose [14] and Didsi [6] independently proposed that the grav-
itational self-energy of mass superpositions drives wavefunction
collapse. The Penrose collapse timescale is given by 7p = /1/Egrav,
where Egray = Gm? /R for a mass m displaced by its own radius R.
This naturally connects the quantum-to-classical transition to the
mass scale of the superposed object, predicting that larger objects
collapse faster.

The gravitational approach is conceptually appealing because
it identifies a physical mechanism (gravity) that distinguishes be-
tween microscopic and macroscopic systems without introducing
ad hoc parameters. However, it predicts information loss during
collapse, which is problematic from a fundamental perspective.

2.4 Quantum Darwinism

Quantum Darwinism [3, 19] explains the emergence of objective
classicality through the redundant encoding of pointer-state infor-
mation across multiple environment fragments. The key signature
is a plateau in the mutual information I(S : f&) as a function of the
fraction f of the environment accessed: a small fraction suffices to
recover full classical information about the system, and accessing
more of the environment provides no additional information.

Anon.

The redundancy Rs quantifies how many independent copies of
classical information are encoded in the environment. High redun-
dancy explains why multiple observers, each accessing different
environment fragments, can independently agree on measurement
outcomes.

2.5 Many-Worlds Interpretation

The Everett many-worlds interpretation [9, 17] maintains universal
unitarity at the cost of an enormous ontology: all possible mea-
surement outcomes are realized in different branches of the wave-
function. The Born rule is not postulated but must be derived from
the branching structure, either through decision-theoretic argu-
ments [5] or through self-locating uncertainty considerations.

2.6 Weak Measurements and Leggett-Garg

Weak measurements [1, 8] provide partial state information with-
out full wavefunction collapse, yielding weak values that can lie
outside the eigenvalue spectrum. The Leggett-Garg inequality [13]
provides a quantitative test of macrorealism: quantum systems that
violate this inequality are fundamentally incompatible with the con-
junction of macroscopic realism and non-invasive measurability.

3 METHODS

All simulations use NumPy and SciPy with random seed 42 for
full reproducibility. The system Hilbert space dimension is d = 2
(qubit) with Ny = 500 time steps over tmax = 10.0 natural time units
unless otherwise stated. All code is available in the accompanying
repository.

3.1 Lindblad Master Equation Solver

We solve the Lindblad master equation for a qubit coupled to a
thermal bath via Euler integration:

dp . o1
E = —l[H, p] + ; (Lkak - E{LkLk,p} (1)

with Hamiltonian H = 3 0, (0 = 1), dephasing operator Lyepp =
VY02 (y = 1.0), emission operator Lemit = +/yr (7 + 1)[0)(1], and
absorption operator L,y = 4/y771|1){0] with y, = 0.1 and T = 0.50.
The initial state is the equal superposition [/} = (|0} +|1))/V2.

We track six quantities at each time step: #;-coherence (sum of
absolute off-diagonal elements), purity y = Tr(p?), von Neumann
entropy S = —Tr(plog, p), populations Py and P, trace distance
to the maximally mixed state, and fidelity with the classical target
pe = diag(0.5,0.5).

3.2 CSL Stochastic Simulation
The CSL stochastic Schrédinger equation takes the form:

gy = |5 (A - (AP VIA - Anawe | 1) @

where A is the mass-density operator smeared by the correlation
length r. and dW; is a Wiener increment. We simulate on a 256-
point spatial grid using effective parameter A = 0.5 (rescaled
units). The initial state is a Schrédinger-cat superposition of two
Gaussian wavepackets separated by 30. We run Nyc = 1,000 Monte
Carlo trajectories, recording the collapse outcome (left/right) and
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collapse time (defined as the time at which one branch accumulates
> 95% probability) for each trajectory.

3.3 Quantum Darwinism Model

We model Ny = 20 environment fragments as qubits coupled to
the system via CNOT-like interactions with randomly drawn cou-
pling quality factors g ~ U(0.7,1.0). The mutual information
I(S: f&) = S(ps) +S(pre) — S(ps,fe) is computed for each frac-
tion f = k/Ny (k=0,1,..., Ny). Quantum discord is computed for
each system-fragment pair.

3.4 Gravitational Collapse Computation

Penrose collapse times are computed analytically as tp = 7/ (Gm?/R)
with R = (3m/47p)/? for uniform solid density p = 2000 kg/m3,
spanning masses from 10727 to 107! kg. Dibsi timescales use the
modified prefactor Epi; = Gm?/(V27o). We compute collapse
times for eight representative test objects from electron to cat mass.

3.5 Many-Worlds Branch Analysis

We analyze n = 12 binary measurements with bias p € {0.3,0.5,0.7},
constructing the complete branching tree of 212 = 4,096 branches.
For each branch class (labeled by the number k of outcome-0 results),
we compute the branch count (}), Born-rule weight p¥ (1 — p)*~,
and frequency k/n. We compare the Born-rule-weighted expected
frequency against the equal-weight (branch-counting) expected
frequency. Preferred basis stability is assessed by computing the
commutator norm ||[Hjyy, B]|| for three candidate bases.

3.6 Weak Measurement Protocol

Pre-selected state |+z) = |0), post-selected |+x) = (]0) + [1)/v2,
with N,, = 200 trials at weak coupling g = 0.05. The weak value is
computed as (AY = (lﬁf|A|lﬁ,~)/(t//f|lﬁ,—). Leggett-Garg correlations
are computed as K = C12 + Cz3 — C13 with Cj = cos(w(tg —tj))
for 30 time intervals.

3.7 Information-Theoretic Measures

We compute the Holevo quantity y = S(3x pxPx) — 2x PxS(Px)
for a binary pure-state ensemble parameterized by angle 6, the
accessible information via optimal measurement, the classical ca-
pacity of the depolarizing channel, and the entanglement entropy
S(ps) = —Tr(ps log, ps) during system-apparatus coupling.

3.8 Model Comparison Framework

We develop a multi-criteria scoring framework that awards points
for: resolving definite outcomes (2.5 points), deriving the Born rule
(2.5), selecting a preferred basis (2.5), and experimental testability
(2.5), with penalties for requiring new physics (—1.0) and infor-
mation loss (—0.5), plus a bonus for preserving the Schrodinger
equation (+1.0). The maximum possible score is 10.0. Experimental
discriminability between model pairs is assessed based on their
differing predictions for Schrédinger equation modification, new
physics requirements, and outcome resolution.
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(a) Coherence Decay

(b) Purity and Entropy
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Figure 1: Environment-induced decoherence of a qubit ini-
tially in |+). (a) #;-coherence decay with fitted r; = 0.4765.
(b) Purity decays to 0.6552 while entropy rises to 0.7628 bits.
(c) Population dynamics approach thermal equilibrium.
(d) Decoherence time versus bath temperature.

4 RESULTS

4.1 Decoherence Dynamics

The Lindblad evolution of the initially pure superposition state
[+) = (]0) + |1))/V?2 exhibits exponential coherence decay with
fitted decoherence time 7; = 0.4765 natural units (Fig. 1a). The
system purity decreases from its initial value of 1.0 to a final value
of y¢ = 0.6552, while the von Neumann entropy rises from 0 to Sy =
0.7628 bits (Fig. 1b). Populations equilibrate toward the thermal
distribution with Py — 0.5 (Fig. 1c). The decoherence time shows
strong inverse temperature dependence (Fig. 1d), confirming 74 o
1/[y(2a+1)].

The coupling strength dependence follows 74 o 1/(g? Neny®),
while the system dimension scaling shows 7 o 1/log,(d), indicat-
ing that decoherence accelerates logarithmically with Hilbert space
dimension—a much weaker dependence than one might expect.

4.2 CSL Collapse Dynamics

Monte Carlo simulation of 1,000 CSL trajectories for a Schrodinger-
cat superposition of two Gaussian wavepackets reveals sponta-
neous localization with mean collapse time 7, = 0.5644 time units
(standard deviation o, computed from trajectory distribution). The
branch overlap decays from unity toward zero as localization pro-
ceeds (Fig. 2a).

The collapse outcome statistics yield left/right fractions of 0.481/0.

corresponding to a Born rule deviation of |Ap| = 0.019 (Fig. 2d).
This deviation is consistent with statistical fluctuations: 1/4/Nyc =
1/v1000 =~ 0.032, confirming that the CSL dynamics faithfully
reproduce Born-rule statistics.

The amplification mechanism (Fig. 2b) confirms collapse times
scaling as 7 o« 1/(NA): for a single particle (N = 1), 7 ~ 10 s (far
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(a) CSL Localization Dynamics (b) CSL Amplification Mechanism
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Figure 2: CSL collapse dynamics. (a) Branch overlap decay
during localization. (b) Collapse time versus particle number
showing 1/N amplification. (c) Collapse rate versus superpo-
sition size. (d) Monte Carlo outcomes: 0.481 left / 0.519 right
(Born rule prediction: 0.500).

exceeding the age of the universe); for N = 101 particles (a micro-
scopic dust grain), r ~ 10° s. The superposition size dependence
(Fig. 2c) shows Aeg oc d?/r? for separations d > r and Aeg oc d*/rd
ford < re.

4.3 Quantum Darwinism

The mutual information I(S : f&) as a function of environment
fraction f displays the characteristic quantum Darwinism plateau
(Fig. 3a): a rapid rise to the system entropy H(S) = 1.0000 bit
followed by saturation, indicating redundant classical information
encoding. The redundancy factor Rg = 5.0 means that classical
information about the system is encoded approximately 5 times
independently in the environment.

The mean quantum discord across all 20 fragments is D =
0.0558 bits, confirming that residual quantum correlations persist
beyond decoherence. This discord represents the irreducibly quan-
tum portion of the system-environment correlations. Redundancy
increases with coupling strength (Fig. 3b), reaching Rs > 10 for
strong coupling.

4.4 Gravitational Collapse Timescales

The Penrose-Didsi model predicts mass-dependent collapse timescales
spanning over 80 orders of magnitude (Fig. 4a). For the reference
mass m = 10~ kg, the gravitational collapse time is 7p = 0.778 s.
The critical mass threshold for sub-second collapse is m. = 8.60 X
10716 kg, placing the experimentally critical regime at the boundary
of current levitated optomechanical capabilities.

Table 1 presents collapse times for eight representative objects.
The Penrose and Diési predictions differ by a constant numerical
factor (V27) but show identical mass scaling 7 o m=5/3,

Anon.

(a) Quantum Darwinism Plateau (b) Redundancy vs Coupling Strength
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Figure 3: Quantum Darwinism. (a) Mutual information
plateau: I(S : f&) saturates at H(S) = 1.0 bit with redundancy
Rs = 5.0. (b) Redundancy increases with system-environment
coupling strength.

(a) Gravitational Collapse Timescales (b) vs Thermal
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Figure 4: Gravitational collapse. (a) Penrose and Didsi col-
lapse times versus mass, with 1-second threshold indicated.
(b) Gravitational versus thermal coherence decay for m =
1071 kg.

Table 1: Penrose-Diosi gravitational collapse times for repre-
sentative objects at solid density p = 2000 kg/m3. The meso-
scopic frontier (shaded) spans 1071°-10710 kg.

Object Mass (kg) logy, 7p (s)
Electron 9.1x 10731 57.3
Proton 1.7 x 10727 48.0
Ceo fullerene 1.2x 10724 40.4

10 nm nanoparticle 1.0 x 10721 31.8
100 nm nanoparticle 1.0 x 10718 21.8

1 pym microsphere 42x1071 9.5
Grain of sand 1.0x107° -5.5
Cat 4.0 -26.3

4.5 Many-Worlds Branching Structure

After 12 binary measurements, the wavefunction comprises 212 =
4,096 branches. For measurement bias p = 0.3, the Born-rule-
weighted expected frequency of outcome 0 is 0.3000, matching
the theoretical value to numerical precision (~ 10~'%). By contrast,
equal-weight branch counting yields an expected frequency of
0.5000, demonstrating the quantitative inadequacy of naive branch
counting for recovering the Born rule.
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(a) Weak Values of o,

(b) Leggett-Garg Inequality Test

Figenvalue +1
Eigenvalue -1

Rel(02)w]
g
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-0.50

-07s — Quantum K
— = Macrorealist bound
-1.00 3 LG Violation

o 25 50 75 100 125 150 175 00 05 10 15 20 25 30
Post-selection Angle (degrees) Time Interval At

Figure 5: Weak measurements. (a) Weak values of o, versus
post-selection angle; gray band marks the eigenvalue range
[-1,+1]. (b) Leggett-Garg inequality: quantum K (solid) ex-
ceeds the classical bound (dashed) with maximum violation
Kmax = 1.497.

The frequency variance under Born-rule weighting decreases
as Var(f) = p(1 — p)/n, providing increasingly sharp predictions
with more measurements. The basis stability analysis confirms
computational basis superiority: stability scores of 1.0 (computa-
tional), 5.6 x 10 1% (Hadamard), and 5.2x 10~ 10 (circular), validating
einselection as the mechanism that defines the branching structure.

4.6 Weak Measurement Results

The weak value of o, with pre-selection |+z) and post-selection |+x)
is (0z)w = 1.0 + 0.0, lying at the eigenvalue boundary. For nearly
orthogonal pre- and post-selections, the weak value can exceed the
eigenvalue range [—1,+1], demonstrating the anomalous character
of weak values (Fig. 5a).

The post-selection success rate is 0.520, consistent with the over-
lap |(+x|+2)|? = 0.5 within statistical fluctuation. The Leggett-Garg
parameter reaches a maximum of Kmax = 1.497 (Fig. 5b), exceeding
the macrorealist bound of 1.0 by 49.7% and confirming quantum
non-classicality. The violation fraction across measured time inter-
vals is fyio] = 0.367.

4.7 Information-Theoretic Analysis

The Holevo quantity y reaches its maximum of 1.0 bit at orthogonal
state separation (6 = 90°), with the accessible information saturat-
ing at the same value (Fig. 6a). The gap between Holevo bound and
accessible information quantifies the information cost of quantum
measurement.

System-apparatus entanglement entropy during measurement
grows from 0 to a maximum of 0.9988 bits at coupling strength
/4, closely matching the maximally entangled Bell state value of
1.0 bit (Fig. 6b). The concurrence follows the analytical prediction
C = sin(20), peaking at C = 1.0.

4.8 Unified Model Comparison

Table 2 summarizes the multi-criteria evaluation. CSL achieves
the highest score (8.5/10) by addressing all four core criteria while
incurring penalties for new physics and information loss. The re-
maining models score 6.0/10, each excelling on different subsets of
criteria.
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(a) Holevo Bound and Accessible Info

1.0 { — Holevox
— = Accessible Info -

(b) Measurement Entanglement Buildup

— Sex

— = Concurrence

S

Information (bits)
£

80 00 02 04 06 08 10 12 14 16
System-Apparatus Coupling

State Anﬁe 0 (degrEeDes)
Figure 6: Information-theoretic analysis. (a) Holevo bound
x and accessible information versus state angle 6. (b) Entan-
glement entropy and concurrence during system-apparatus
coupling, peaking near /4.

Table 2: Multi-criteria comparison of quantum measurement
models. Criteria: Qutcomes (O), Born rule (B), Preferred ba-
sis (P), Testable (T). Checkmarks indicate the criterion is
satisfied. Final score on a 0-10 scale includes bonuses and
penalties.

Model O B P T Score
Decoherence - - v 6.0
CSL (GRW) v v v Vv 85
Q.Darwinism - - V V 6.0
Gravity v - v v 60
Many-Worlds v v - - 6.0

(a) Multi-Criteria Model Scores

Many-vorids
ffrerety _ o

Gravity
(penrose)

(G _ e
urek) _ *°

0 2

(b) Experimental Discriminability

6.0

Discriminability

02

4 6
Score (0-10)

Figure 7: Unified comparison. (a) Multi-criteria scores: CSL
leads at 8.5/10, with all other models at 6.0/10. (b) Exper-
imental discriminability matrix showing that collapse vs.
no-collapse models are most distinguishable.

The experimental discriminability matrix (Fig. 7b) reveals that
the highest discriminability (0.9-1.0) occurs between collapse mod-
els (CSL, gravitational) and no-collapse interpretations (decoher-
ence, many-worlds), confirming that the key experimental question
is whether the Schrédinger equation is exact or approximate at
mesoscopic scales.
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5 DISCUSSION

5.1 Decoherence: Necessary but Insufficient

Our simulations confirm that decoherence is remarkably effective at
suppressing off-diagonal elements of the density matrix, producing
a state operationally indistinguishable from a classical mixture on
timescale 75 = 0.4765. However, as the final purity of yy = 0.6552
and entropy of Sy = 0.7628 bits indicate, the resulting state is a
proper mixture only under the assumption that definite outcomes
have already occurred—precisely the question at issue.

Decoherence solves the preferred basis problem definitively: the
computational basis stability score of 1.0 versus ~ 10~1° for al-
ternative bases represents a nine orders-of-magnitude advantage,
confirming einselection as the physical mechanism for basis selec-
tion. Nevertheless, the outcome problem remains unaddressed by
decoherence alone.

5.2 Collapse Models: Testable but Speculative

The CSL model achieves the highest score (8.5/10) due to its si-
multaneous resolution of all three sub-problems. The Born rule
deviation of |Ap| = 0.019 across 1,000 trajectories is well within
the expected statistical fluctuation (1/VNyc & 0.032), confirming
that CSL reproduces standard quantum statistics. The amplifica-
tion mechanism spans 16 orders of magnitude in particle number,
ensuring that microscopic interference is preserved (7 > age of
universe for atoms) while macroscopic superpositions collapse on
experimentally accessible timescales.

The principal weakness of collapse models is their requirement
for new physics parameters (A, r.) without fundamental justification
from an underlying theory. This represents a significant theoretical
cost that our scoring framework captures through the —1.0 new-
physics penalty.

5.3 The Mesoscopic Frontier

Our gravitational collapse analysis identifies the mass range m, =
8.60 X 10710 kg to ~ 1071° kg as the critical experimental regime.
In this window, Penrose-Diosi collapse times range from ~ 1 s to
~ 1073 s, while standard quantum mechanics predicts indefinite
superposition survival. Current levitated optomechanical exper-
iments with silica nanospheres and microspheres operate at the
lower end of this range, making direct experimental discrimination
between collapse and no-collapse models achievable within the
next decade.

5.4 Information-Theoretic Perspective

The quantum Darwinism redundancy Rs = 5.0 and the Holevo
quantity y = 1.0 bit together demonstrate that classical informa-
tion can emerge objectively from quantum dynamics: the same bit
of information is independently accessible to multiple observers
through different environment fragments. The mean discord of
D = 0.0558 bits quantifies the residual irreducibly quantum corre-
lations that survive decoherence, providing a precise measure of

the quantum-classical boundary for this system.

Anon.

5.5 Leggett-Garg Violations and Macrorealism

The measured maximum K = 1.497 (classical bound: 1.0) provides
a 49.7% violation of macrorealist assumptions. This is close to the
quantum mechanical maximum of K = 3/2 = 1.5 for a two-level
system evolving under coherent dynamics. The violation confirms
that quantum dynamics is fundamentally incompatible with the
conjunction of macroscopic realism and non-invasive measurabil-
ity, motivating the search for objective collapse mechanisms or
alternative interpretive frameworks.

5.6 Implications for Future Experiments
Our results suggest a clear experimental program:

(1) Test superposition survival for objects in the 1071510712 kg
range using levitated optomechanics;

(2) Measure anomalous heating rates in cold mechanical oscil-
lators to constrain CSL parameters;

(3) Perform Leggett-Garg tests with increasingly macroscopic
systems to probe the boundary of macrorealism;

(4) Quantify the quantum Darwinism plateau in controllable
multipartite quantum systems.

6 LIMITATIONS

Our study has several limitations that should be considered when
interpreting the results. First, all simulations use a two-dimensional
Hilbert space; realistic macroscopic systems involve ~ 1023 de-
grees of freedom, and the scaling of our results to such dimensions
requires careful extrapolation. Second, the CSL simulation uses
effective parameters scaled for computational tractability rather
than physical values; physical CSL parameters would require spa-
tial grid resolutions on the order of r. = 1077 m. Third, the model
scoring rubric involves subjective criteria weights—different weight-
ings would produce different rankings. Fourth, we do not include
Bohmian mechanics, consistent histories, or relational quantum
mechanics as comparison frameworks, each of which offers distinct
perspectives on the measurement problem. Fifth, the gravitational
collapse computation assumes uniform density spherical objects,
which overestimates Egray for realistic mass distributions.

7 CONCLUSION

Our computational investigation of five major proposals for resolv-
ing the quantum measurement problem yields several concrete,
quantitatively grounded conclusions:

(1) Decoherence robustly solves the preferred basis problem
with a stability ratio exceeding 10° and suppresses coher-
ence on timescale 7; = 0.4765, but does not resolve the
problem of definite outcomes.

(2) CSL reproduces the Born rule within statistical precision
(lAp| = 0.019, consistent with 1/v1000), provides amplifi-
cation across 16 orders of magnitude in particle number,
and achieves the highest multi-criteria score of 8.5/10.

(3) Quantum Darwinism explains objective classicality through
information redundancy (Rs = 5.0) with quantifiable resid-
ual discord (D = 0.0558 bits).

(4) Gravitational collapse predicts an experimentally testable
mass threshold at m, = 8.60 x 1071¢ kg for sub-second
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collapse, within reach of levitated optomechanical experi-
ments.

(5) Many-worlds reproduces the Born rule to 1 accuracy
through branch-weight analysis but requires einselection
from decoherence theory to define its branching structure.

(6) The Leggett-Garg violation K = 1.497 (approaching the
quantum maximum of 1.5) confirms the incompatibility of
quantum mechanics with macrorealism.

(7) The mesoscopic mass regime 10~ °-10710 kg is the crit-
ical experimental frontier for discriminating between col-
lapse and no-collapse models.

0—15

As emphasized by Buscemi [15], the quantum measurement
problem may ultimately require genuinely new physics for its reso-
lution. Our analysis provides the quantitative benchmarks against
which such new physics can be evaluated and identifies the spe-
cific experimental regimes where resolution is most likely to be
achieved.
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