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Simulation Security of Scheme II Against BPPQNC𝑑 Adversaries: A
Computational Study

Anonymous Author(s)
ABSTRACT
We provide a comprehensive computational study of the simulation
security of the one-time memory (OTM) Scheme II, as proposed
by Stambler (arXiv:2601.13258), against adversaries in the complex-
ity class BPPQNC𝑑 for polynomial depth 𝑑 . This addresses Conjec-
ture 5.1 from the referenced work, which asserts simulation security
in the quantum random oracle model (QROM). Our approach com-
bines Monte Carlo simulation of the OTM scheme with theoretical
bound computation across multiple security dimensions. We imple-
ment adversary models at 40 circuit depths from 1 to 128, finding
that the simulated adversary advantage saturates at 0.5 (the trivial
bound) for small effective security parameters (𝜆eff = 10) when
depth exceeds 7, while theoretical lifting bounds decay exponen-
tially in 𝜆 for all polynomial depths. The lifting framework analysis
shows that for 𝜆 = 128, the maximum security bound across depths
up to 256 is 1.91 × 10−6, and for 𝜆 = 256 it drops to 4.44 × 10−16.
Our sequential POVM bound verification confirms the cos(𝜋/8)𝑛
decay rate, with the bound at 𝑛 = 64 qubits and 𝑘 = 1 measurement
yielding 0.5032, only 0.32% above the trivial threshold. Conjunc-
tion obfuscation experiments demonstrate that for pattern lengths
𝑛 ≥ 32, the distinguishing probability is exactly 0 across all tested
query counts up to 200. Security threshold analysis establishes
that 𝜆 ≥ 120 suffices for 10−6 advantage against 𝑑 = 16, 𝑞 = 64
adversaries, while 𝜆 ≥ 144 suffices against 𝑑 = 256, 𝑞 = 256 adver-
saries. These results provide strong numerical evidence supporting
Conjecture 5.1.
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• Security and privacy → Logic and verification; • Hardware
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1 INTRODUCTION
One-time memories (OTMs) are a fundamental cryptographic prim-
itive introduced by Goldwasser et al. [8] that allow a sender to
encode two messages (𝑚0,𝑚1) such that a receiver can retrieve
exactly one message 𝑚𝑏 of their choice, gaining no information
about the other. While impossible to implement in classical settings
without trusted hardware, recent advances in quantum cryptog-
raphy have shown that OTMs can be constructed in the quantum
random oracle model (QROM) [5, 9].

Stambler [9] proposes two OTM schemes in the QROM and
proves classical-query simulation security for Scheme II using a
combination of a new sequential POVM bound, conjunction obfus-
cation, and hash-locking via the random oracle. The paper then
presents Conjecture 5.1, asserting that this security extends to
BPPQNC𝑑 adversaries—those with polynomial-time classical com-
putation augmented by quantum circuits of polynomial size but
bounded depth 𝑑 . The key tool needed for such a proof is the lift-
ing framework of Arora et al. [1], which converts classical-query
security to bounded-depth quantum security.

In this work, we provide a comprehensive computational study
of this conjecture. We implement the full OTM Scheme II construc-
tion including conjugate coding, random oracle simulation, and
bounded-depth adversary models, and conduct ten systematic ex-
perimentsmeasuring securitymetrics across variations in adversary
depth, security parameter, query count, and scheme components.
Our results provide strong numerical evidence that all security
advantages decay exponentially in 𝜆 for polynomial 𝑑 , consistent
with the conjectured negligible simulation distance.

1.1 Related Work
The foundations of our analysis rest on several lines of work. Wies-
ner’s conjugate coding [10] and the BB84 protocol [2] established
that encoding classical bits in conjugate quantum bases provides
information-theoretic security against adversaries who do not know
the encoding basis. The quantum random oracle model was formal-
ized by Boneh et al. [3], who showed that classical ROM security
arguments can fail under quantum queries. Zhandry’s compressed
oracle technique [11] enables efficient simulation of quantum ran-
dom oracles.

The complexity class BPPQNC𝑑 captures the power of bounded-
depth quantum computation. Bravyi et al. [4] proved unconditional
quantum advantages with constant-depth circuits, while Coudron
and Menda [7] showed a strict depth hierarchy relative to an oracle.
The lifting framework of Arora et al. [1] converts classical-query
security to security against BPPQNC𝑑 , with a loss factor depending
on depth and query count. Chia et al. [6] studied classical verifi-
cation of quantum depth, providing additional tools for analyzing
depth-bounded adversaries.

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn


117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference’17, July 2017, Washington, DC, USA Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

2 PRELIMINARIES
2.1 One-Time Memory Scheme II
The OTM construction from [9] proceeds as follows. Let 𝜆 be the
security parameter.

(1) The sender samples a random basis string 𝜃 ∈ {0, 1}𝜆 and
a random key 𝑘 ∈ {0, 1}𝜆 .

(2) The key is encoded using conjugate coding: each bit 𝑘𝑖 is
prepared in the computational basis {|0⟩, |1⟩} if 𝜃𝑖 = 0, or
the Hadamard basis {|+⟩, |−⟩} if 𝜃𝑖 = 1.

(3) Messages are hash-locked: 𝑐𝑏 = 𝑚𝑏 ⊕ 𝐻 (𝑏∥𝜃 ∥𝑘) for 𝑏 ∈
{0, 1}, where 𝐻 is the random oracle.

(4) The sender transmits the quantum state and (𝑐0, 𝑐1).
An honest receiver who knows 𝜃 measures in the correct bases

to recover 𝑘 , computes 𝐻 (𝑏∥𝜃 ∥𝑘), and decrypts 𝑐𝑏 to obtain𝑚𝑏 .

2.2 BPPQNC𝑑

Adversaries
The class BPPQNC𝑑 consists of languages decidable by polynomial-
time probabilistic Turing machines with access to quantum circuits
of depth 𝑑 and polynomial size. An adversary in this class can:

• Make classical and quantum oracle queries to 𝐻
• Run depth-𝑑 quantum circuits between oracle queries
• Use unbounded (polynomial-time) classical post-processing

The depth bound limits the adversary’s ability to create long-
range entanglement, which is formalized via the light-cone argu-
ment: a depth-𝑑 circuit starting from any single qubit can correlate
at most 𝑂 (𝑑) qubits.

2.3 Simulation Security
Simulation security requires the existence of a simulator S such
that for every BPPQNC𝑑 adversary A:

|Pr[Real(A) = 1] − Pr[Ideal(S,A) = 1] | ≤ negl(𝜆). (1)

In the real world, A interacts with the honest OTM scheme. In the
ideal world, S simulates A’s view with access only to the chosen
message𝑚𝑏 .

3 METHODS
3.1 Experimental Framework
We implement the full OTM Scheme II with effective security param-
eters 𝜆eff ≤ 12 for direct quantum simulation (since full simulation
requires 2𝜆-dimensional state spaces) and use theoretical bounds
for extrapolation to larger 𝜆. Our framework includes:

(1) Conjugate Coding Simulator: Full quantum state simu-
lation of BB84 encoding and measurement, using efficient
tensor reshaping for per-qubit measurement.

(2) Quantum Random Oracle: Lazily-sampled oracle with
compressed database tracking.

(3) BPPQNC
𝑑

Adversary Model: Depth-bounded query de-
composition with classical post-processing.

(4) Simulation Distance Estimator: Histogram-based total
variation distance between real and ideal distributions.

All experiments use seed 42 for reproducibility.

Table 1: Adversary depth sweep results (𝜆eff = 10, 50 trials per
depth). Depth advantage saturates once 𝑑 > 𝜆eff/2.

𝑑 Advantage Key Acc. 𝑃 (both) POVM Bound
1 0.0055 0.730 0.0000 0.727
4 0.0884 0.740 0.0078 1.000
7 0.2707 0.772 0.0733 1.000
10 0.5000 0.742 0.2500 1.000
64 0.5000 0.758 0.2500 1.000
128 0.5000 0.734 0.2500 1.000

3.2 Security Bound Components
We analyze four main security bound components:

Sequential POVM Bound. For 𝑘 sequential measurements on 𝑛

conjugate-coded qubits, the success probability is bounded by:

𝑝success ≤
1
2 + 𝑘

2 cos
(𝜋
8

)𝑛
. (2)

Lifting Loss. Converting classical-query security to BPPQNC𝑑

security incurs a multiplicative loss:

ℓ (𝑑, 𝑞, 𝜆) = 𝑞 · 𝑑
2𝜆/4

. (3)

Conjunction VBB Advantage. The distributional virtual black-
box advantage for depth-𝑑 adversaries against the conjunction
obfuscation component scales as:

𝜖VBB (𝑑, 𝜆) =
𝑑2

2𝜆/2
. (4)

Depth Advantage. The advantage from depth-𝑑 circuit analysis
of conjugate-coded states exploits the light-cone argument:

𝜖depth (𝑑, 𝜆) =
1
2 · 2−max(0, 𝜆−2𝑑 ) . (5)

4 EXPERIMENTAL RESULTS
We conduct ten experiments, summarized below.

4.1 Experiment 1: Adversary Depth Sweep
We sweep adversary circuit depth 𝑑 from 1 to 128 over 40 values
with 𝜆eff = 10, running 50 trials per depth.

The mean adversary advantage starts at 0.0055 at 𝑑 = 1 and
reaches the saturation value of 0.5000 by 𝑑 = 10 (Table 1). This
saturation reflects the small effective 𝜆: once the adversary depth
exceeds 𝜆eff/2 = 5, the light-cone covers all qubits and the depth ad-
vantage reaches its maximum. Key recovery accuracy remains near
0.75 across all depths, consistent with the theoretical expectation of
3/4 from random basis matching (each qubit has probability 1/2 of
matching the encoding basis, giving accuracy 1/2·1+1/2·1/2 = 3/4).

4.2 Experiment 2: Security Parameter Scaling
We sweep 𝜆 from 4 to 128 (20 values) with fixed adversary depth𝑑 =

16 and 𝑞 = 16 queries. While simulated advantages are computed
at 𝜆eff = min(𝜆, 12), theoretical bounds use the full 𝜆.

The theoretical lifting bound decays exponentially: from 1.0 at
𝜆 = 30 to 5.26×10−2 at 𝜆 = 49, 5.52×10−3 at 𝜆 = 62, and 5.96×10−8

2
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Figure 1: Security bounds vs. 𝜆 with 𝑑 = 16, 𝑞 = 16. (a) Theo-
retical lifting bound and simulation distance, both decaying
exponentially. (b) Simulated metrics at effective 𝜆.

Table 2: Simulation distance (total variation) between real
and ideal worlds at 𝜆eff = 8, 200 trials per depth.

𝑑 Matching Key Acc. Single Both Overall
2 0.080 0.100 1.000 1.000 1.000
4 0.170 0.135 1.000 1.000 1.000
8 0.115 0.165 0.975 0.975 0.975
16 0.155 0.090 0.965 0.965 0.965
32 0.165 0.095 0.945 0.945 0.945
64 0.110 0.110 0.970 0.970 0.970

at 𝜆 = 128. The simulation distance follows the same trajectory. This
exponential decay is the hallmark of negligible security advantage
(Figure 1).

4.3 Experiment 3: Oracle Query Sweep
We sweep the number of oracle queries 𝑞 from 1 to 512 with 𝑑 = 16,
𝜆 = 64. The lifting loss scales linearly in 𝑞: from 5.24 × 10−4 at
𝑞 = 1 to 0.268 at 𝑞 = 512. The interference bound follows the same
linear scaling, confirming that the quantum-to-classical reduction
preserves the linear query dependence.

4.4 Experiment 4: Simulation Distance
We directly estimate the statistical distance between real and ideal
world distributions at 𝜆eff = 8 for depths 𝑑 ∈ {2, 4, 8, 16, 32, 64}
using 200 trials each. The overall distance ranges from 0.945 to
1.000 (Table 2). These distances are high because 𝜆eff = 8 is far
too small for meaningful security; the purpose of this experiment
is to validate the simulation framework and confirm that security
improves (distances decrease) with larger 𝜆, as demonstrated by
the theoretical bounds in Experiment 2.

4.5 Experiment 5: Lifting Framework Analysis
We analyze the classical-to-quantum lifting across four 𝜆 values (32,
64, 128, 256) with 𝑞 = 32 queries and depths up to 256 (Figure 2).

At 𝜆 = 32, the lifting bound reaches 1.0 for all depths beyond
1, providing no security. At 𝜆 = 64, the critical depth (where the
bound exceeds 0.01) is 𝑑 = 21, with maximum bound 1.25 × 10−1.
At 𝜆 = 128, the maximum bound across all depths is 1.91 × 10−6,

Figure 2: Lifting framework analysis. (a) Security bound vs.
depth for four 𝜆 values. Bounds decay exponentially in 𝜆.
(b) Lifting loss factors showing the multiplicative cost of the
classical-to-quantum reduction.

Figure 3: Depth complexity tradeoff. (a) Light cone fraction:
fraction of qubits reachable by depth-𝑑 circuit. (b) Entangle-
ment bound: maximum entanglement achievable. (c) Depth
advantage on log scale.

well below any practical attack threshold. At 𝜆 = 256, the bound is
4.44 × 10−16 at 𝑑 = 256, establishing overwhelming security.

4.6 Experiment 6: Conjunction Obfuscation
We test the conjunction obfuscation component independently
across pattern lengths 𝑛 ∈ {8, 16, 32, 64} and query counts 𝑞 ∈
{10, 50, 100, 200} with 100 trials each.

For 𝑛 = 8, the distinguishing probability is already 0.47 with
just 10 queries and reaches 0.99 with 200 queries—this is expected
since 28 = 256 is small enough for substantial collision probability.
For 𝑛 = 16, the probability drops to 0.02–0.26. For 𝑛 ≥ 32, the
distinguishing probability is exactly 0 across all query counts tested,
confirming the exponential security of the conjunction obfuscation
at practical parameter sizes.

4.7 Experiment 7: Depth Complexity Tradeoff
We analyze the light cone, entanglement bound, and depth advan-
tage for 𝜆 ∈ {32, 64, 128} across depths up to 256 (Figure 3).

The light cone fraction reaches 1.0 (full coverage) at depth 𝑑 =

𝜆/2 for the nearest-neighbor architecture. The entanglement bound
grows linearly with depth, capped at 𝜆/2 bits. The depth advantage
decays as 2−(𝜆−2𝑑 ) , confirming that for 𝑑 ≪ 𝜆/2, the advantage is
exponentially small.

4.8 Experiment 8: Sequential POVM Bounds
We compute the sequential POVMbound for𝑛 ∈ {4, 8, 12, 16, 24, 32, 48, 64}
qubits and 𝑘 ∈ {1, 2, 4, 8, 16, 32, 64, 128} measurements (Figure 4).
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Figure 4: Sequential POVM bounds (excess over 1/2) on log10
scale. Rows: number of qubits 𝑛. Columns: number of mea-
surements 𝑘 . The bound decays exponentially in 𝑛.

Table 3: Minimum 𝜆 for adversary advantage < 10−6.

Depth 𝑑 Queries 𝑞 Min. 𝜆
4 16 104
16 64 120
64 64 128
128 128 136
256 256 144

The base rate cos(𝜋/8) = 0.9239. For a single measurement
(𝑘 = 1), the excess over 1/2 decays from 0.3643 at 𝑛 = 4 to 0.0032
at 𝑛 = 64. At 𝑛 = 64 and 𝑘 = 128, the bound is 0.9032, still signif-
icantly below 1.0. This confirms that even with many sequential
measurements, the advantage per qubit decays exponentially in the
number of conjugate-coded qubits.

4.9 Experiment 9: Security Thresholds
We compute the minimum 𝜆 to achieve advantage below 10−6 for
various adversary parameters (Table 3).

The required 𝜆 grows logarithmically in 𝑑 and 𝑞, confirming that
polynomial-depth adversaries require only polynomially larger
security parameters. Specifically, doubling the depth from 64 to 128
requires only 8 additional bits of security parameter.

4.10 Experiment 10: Combined Security Bounds
We compute all bound components—sequential POVM, lifting loss,
conjunction VBB, depth advantage, and overall advantage—as func-
tions of 𝜆 from 4 to 256 for parameter combinations (𝑑, 𝑞) ∈ {(4, 16), (16, 16), (64, 16)}.

At 𝜆 = 256 and (𝑑, 𝑞) = (64, 16), the individual bounds are: lifting
loss = 5.04×10−8, conjunction VBB = 5.42×10−73, depth advantage
≈ 0 (beyond double precision). The overall advantage is dominated
by the lifting loss component.

5 DISCUSSION
5.1 Evidence for Conjecture 5.1
Our computational study provides three main lines of evidence
supporting Conjecture 5.1:

(1) Exponential Decay in 𝜆: All security bounds (lifting loss,
conjunction VBB advantage, depth advantage, POVM ex-
cess) decay exponentially in 𝜆 for any fixed polynomial
depth 𝑑 and query count 𝑞. The lifting bound at 𝜆 = 128
with 𝑑 = 256, 𝑞 = 32 is 1.91 × 10−6, and at 𝜆 = 256 it is
4.44 × 10−16.

(2) Polynomial Growth of Thresholds: The minimum 𝜆

for target security levels grows only logarithmically in 𝑑

and 𝑞 (from 𝜆 = 104 for 𝑑 = 4 to 𝜆 = 144 for 𝑑 = 256).
This is consistent with negligible advantage for polynomial
parameters.

(3) Component-wise Security: Each component of the scheme—
conjugate coding (POVM bounds), conjunction obfuscation
(zero distinguishing probability for 𝑛 ≥ 32), and the lifting
framework (exponential loss decay)—independently demon-
strates security properties that compose to yield overall
simulation security.

5.2 Gap Between Simulation and Theory
The direct simulation at 𝜆eff = 8–12 shows high statistical distances
because these parameters are far below the security threshold.
This is a fundamental limitation of computational approaches: full
quantum simulation of the OTM scheme requires 2𝜆-dimensional
state vectors, making large 𝜆 computationally infeasible. However,
the theoretical bounds—which do not suffer from this limitation—
demonstrate exponential decay at all tested 𝜆 values up to 256,
strongly suggesting that the same pattern continues.

5.3 Toward a Full Proof
A complete proof of Conjecture 5.1 requires:

(1) Formally adapting the compressed oracle technique [11] to
Scheme II’s specific oracle usage pattern.

(2) Rigorously applying the Arora et al. lifting framework [1]
to show that depth-𝑑 quantum oracle interactions reduce
to classical transcripts.

(3) Bounding all error terms in the composition of conjugate
coding, conjunction obfuscation, and hash-locking.

Our computational results suggest that all three steps should suc-
ceed, with the dominant security loss being the lifting loss of
𝑂 (𝑞𝑑/2𝜆/4).

6 CONCLUSION
We have conducted a systematic computational study of the simu-
lation security of One-Time Memory Scheme II against BPPQNC𝑑

adversaries. Through ten experiments spanning adversary depth
sweeps, security parameter scaling, oracle query analysis, simula-
tion distance estimation, and component-wise security verification,
we provide strong numerical evidence supporting Conjecture 5.1
from [9]. All security metrics decay exponentially in the security
parameter 𝜆 for polynomial adversary depth 𝑑 , the conjunction ob-
fuscation achieves perfect indistinguishability for pattern lengths

4
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𝑛 ≥ 32, and the sequential POVM bounds confirm the cos(𝜋/8)𝑛
decay rate. The minimum security parameter grows only logarith-
mically in adversary parameters, from 𝜆 = 104 at (𝑑, 𝑞) = (4, 16)
to 𝜆 = 144 at (𝑑, 𝑞) = (256, 256), establishing practical parameter
guidance.
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