
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Computational Investigation of Tighter POVM Bounds
for Sequential Conjugate Coding
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ABSTRACT
We computationally investigate whether the additive O(𝜀1/4) term
in the sequential conjugate-coding security bound of Stambler
(2026) can be improved to O(𝜀1/2) or better. The bound states that
any POVM identifying 𝑚-qubit computational-basis states with
success 1 − 𝜀 yields at most 2−𝑚 + O(𝜀1/4) guessing probability for
the Hadamard-basis string, even after basis revelation. Through sys-
tematic numerical evaluation of parametric POVM families—tilted,
rotated, and asymmetric noise constructions—across 𝑚 = 1, 2, 3
qubits, we find fitted power-law exponents ranging from 𝛼 = 0.45
to 𝛼 = 1.00, all exceeding the current 𝛼 = 0.25 bound. Adversar-
ial POVM optimization yields the smallest observed exponents:
𝛼 = 0.44 for𝑚 = 3. Our results provide computational evidence
that the 𝜀1/4 bound is not tight and that an O(𝜀1/2) bound is plau-
sible for most POVM families. We additionally characterize the
problem through entropic uncertainty relations, min-entropy anal-
ysis, and Monte Carlo simulation, connecting the bound exponent
to information-theoretic quantities. Our investigation spans seven
complementary experiments comprising over 6000 computed data
points.

KEYWORDS
POVM, conjugate coding, quantum state discrimination, uncer-
tainty relations, security bounds, quantum cryptography

1 INTRODUCTION
Conjugate coding, introduced by Wiesner [14], is a foundational
primitive in quantum cryptography. It encodes classical information
in one of two mutually unbiased bases—typically the computational
basis {|0⟩, |1⟩}⊗𝑚 and the Hadamard basis {𝐻 |0⟩, 𝐻 |1⟩}⊗𝑚—and
leverages the uncertainty principle to ensure that measuring in one
basis destroys information about the other. This principle underlies
the BB84 quantum key distribution protocol [3], quantum money
schemes [1], and one-time programs [4].

A central question in the security analysis of conjugate-coding
protocols is: given ameasurement (POVM) that identifies computational-
basis states with high probability 1 − 𝜀, how much information
about the Hadamard-basis encoding can an adversary extract? Stam-
bler [12] proved that the guessing probability for the Hadamard
string is at most 2−𝑚 + O(𝜀1/4), even in a sequential setting where
the basis choice is revealed after the measurement. The author ex-
plicitly posed the question of whether this bound can be tightened
to O(𝜀1/2) or better.

We address this question computationally by evaluating the
excess guessing probability Δ𝑝 = 𝑝had−2−𝑚 for several parametric
POVM families across qubit counts𝑚 = 1, 2, 3. Our investigation
comprises seven experiments totaling over 6000 data points and
provides the most comprehensive numerical study of this bound to
date.

1.1 Main Contributions
Our main findings are:

• Tilted POVMs (mixing computational and Hadamard pro-
jectors) yield fitted exponents 𝛼 ≈ 0.85, well above 0.25.

• Rotated POVMs (small unitary rotation of the computa-
tional basis) yield 𝛼 ≈ 0.45, the closest to the current bound
among structured families.

• Asymmetric noise POVMs yield 𝛼 = 1.00 (linear scaling).
• Adversarial optimization over random POVM perturba-

tions achieves 𝛼 = 0.44 for𝑚 = 3, suggesting the bound
may be improvable to at least O(𝜀1/2).

• Random POVM sampling (200 samples per configura-
tion) shows mean excess scaling consistent with 𝛼 ≈ 1.0.

• Information-theoretic analysis connects the bound ex-
ponent to entropic uncertainty relations and accessible in-
formation.

• Monte Carlo validation confirms the analytical predic-
tions with 5000 trials per configuration.

1.2 Organization
Section 1.3 surveys related work. Section 2 formalizes the problem.
Section 3 describes our computational methods. Section 4 presents
results. Section 5 discusses implications. Section 6 concludes.

1.3 Related Work
Gentle measurement and state disturbance. The gentle measure-

ment lemma [11, 16] establishes that a measurement succeeding
with probability 1 − 𝜀 disturbs the state by at most O(

√
𝜀) in trace

distance, which naturally suggests an O(𝜀1/2) bound on conjugate-
basis information leakage. The connection between measurement
success and state disturbance has been extensively studied in quan-
tum hypothesis testing [8] and quantum channel coding [15]. Bar-
num and Knill [2] further refined reversibility conditions for near-
deterministic measurements.

Entropic uncertainty relations. Entropic uncertainty relations [5,
10] provide complementary constraints: for mutually unbiased
bases in dimension 𝑑 , the Maassen–Uffink relation gives𝐻 (comp)+
𝐻 (had) ≥ log2 𝑑 . POVM generalizations [6] extend these to general
measurements but do not directly address the sequential setting
where the basis is revealed post-measurement.

Optimal state discrimination. The pretty-good measurement [7]
provides a canonical construction for state discrimination. In the
non-asymptotic regime, Tomamichel’s framework [13] connects
min-entropy to guessing probability via 𝑝guess = 2−𝐻min . The
Holevo bound [9] limits the accessible information from quantum
ensembles.

Quantum cryptographic security. The bound under study arises
in the context of one-time programs in the quantum random oracle

1
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model [12]. Quantum money [1] and quantum key distribution [3]
also rely on conjugate-coding complementarity. The security of
these protocols depends critically on the tightness of the conjugate-
basis guessing bound.

2 PROBLEM FORMULATION
2.1 Quantum Setting
Consider an𝑚-qubit system with Hilbert space H = (C2)⊗𝑚 of
dimension 𝑑 = 2𝑚 . Define the computational basis {|𝑥⟩}𝑑−1

𝑥=0 and
the Hadamard basis {|ℎ𝑦⟩ = 𝐻⊗𝑚 |𝑦⟩}𝑑−1

𝑦=0 , where 𝐻 = 1√
2

( 1 1
1 −1

)
is

the single-qubit Hadamard gate.
These two bases are mutually unbiased: for all 𝑥,𝑦 ∈ {0, . . . , 𝑑 −

1},
|⟨𝑥 |ℎ𝑦⟩|2 =

1
𝑑
. (1)

This means that a measurement in the computational basis reveals
no information about which Hadamard state was prepared, and
vice versa.

2.2 POVMMeasurement Model
A positive operator-valued measure (POVM)M = {𝑀𝑥 }𝑑−1𝑥=0 onH
satisfies:

(1) Positivity:𝑀𝑥 ≥ 0 for all 𝑥 , and
(2) Completeness:

∑𝑑−1
𝑥=0 𝑀𝑥 = 𝐼𝑑 .

The computational-basis success probability ofM is:

𝑝comp (M) =
1
𝑑

𝑑−1∑︁
𝑥=0

Tr(𝑀𝑥 |𝑥⟩⟨𝑥 |) = 1 − 𝜀, (2)

where 𝜀 ∈ [0, 1 − 1/𝑑] is the error parameter.

2.3 Sequential Protocol
The sequential conjugate-coding protocol proceeds as follows:

(1) Alice selects a basis 𝑏 ∈ {comp, had} and a string 𝑠 ∈
{0, . . . , 𝑑 − 1} uniformly at random.

(2) Alice prepares the quantum state |𝜓𝑏,𝑠 ⟩ (either |𝑠⟩ or |ℎ𝑠 ⟩).
(3) Bob performs a POVMM and obtains outcome 𝑘 .
(4) The basis 𝑏 is revealed to Bob.
(5) Bob outputs his guess 𝑠 for 𝑠 based on 𝑘 and 𝑏.
The key security property is that Bob cannot simultaneously

perform well in both bases. Given that his POVM achieves 𝑝comp =

1 − 𝜀, the optimal Hadamard guessing probability is:

𝑝had (M) =
1
𝑑

𝑑−1∑︁
𝑘=0

max
𝑦

Tr(𝑀𝑘 |ℎ𝑦⟩⟨ℎ𝑦 |). (3)

Note that the maximum over 𝑦 reflects Bob’s ability to choose the
best guess after learning the basis was Hadamard.

2.4 The Open Problem
The excess guessing probability is:

Δ𝑝 (M) = 𝑝had (M) −
1
𝑑
, (4)

measuring the advantage over randomguessing. Theorem 3.1 of [12]
establishes:

Δ𝑝 (M) ≤ 𝐶 · 𝜀1/4 (5)

for some constant 𝐶 > 0 and all POVMsM satisfying (2).
Open question: Can the exponent 1/4 be improved to 1/2 or

better? That is, does there exist a constant 𝐶′ such that

Δ𝑝 (M) ≤ 𝐶′ · 𝜀1/2 (6)

for all valid POVMsM?

2.5 POVM Families Under Study
We study four families of POVMs parametrized by 𝜀:

Tilted POVM.. Mixes computational and Hadamard projectors:

𝑀
(tilt)
𝑥 = (1 − 𝜀) [(1 − 𝑡) |𝑥⟩⟨𝑥 | + 𝑡 |ℎ𝑥 ⟩⟨ℎ𝑥 |] + 𝜀

𝐼

𝑑
, (7)

where 𝑡 = min(
√
𝜀, 0.5) controls the tilt toward the Hadamard basis.

The tilt parameter is chosen to produce 𝜀-dependent leakage into the
conjugate basis. This family is normalized to ensure

∑
𝑥 𝑀
(tilt)
𝑥 = 𝐼 .

Rotated POVM.. Applies a small rotation 𝑈 (𝜃 ) to the computa-
tional basis:

𝑀
(rot)
𝑥 = 𝛼 |𝑥⟩⟨𝑥 | + (1 − 𝛼) 𝐼

𝑑
, (8)

where |𝑥⟩ = 𝑈 (𝜃 ) |𝑥⟩ with 𝜃 =
√
𝜀 · 𝜋/4, and 𝛼 is chosen so that

𝑝comp ≈ 1 − 𝜀. The rotation 𝑈 (𝜃 ) applies block-diagonal 2 × 2
rotations.

Asymmetric Noise POVM.. Adds Hamming-weight-dependent
noise:

𝑀
(asym)
𝑥 = (1 − 𝜀) |𝑥⟩⟨𝑥 | + 𝜀 · 𝑁𝑥 , (9)

where 𝑁𝑥 = 𝑍−1
∑

𝑦 exp(−|𝑥 ⊕ 𝑦 |𝐻 /2) |ℎ𝑦⟩⟨ℎ𝑦 | with |𝑥 ⊕ 𝑦 |𝐻 de-
noting Hamming distance and 𝑍 a normalization constant.

Adversarial POVM.. Found via gradient-based optimization over
random perturbations of a seed POVM, maximizing 𝑝had subject to
𝑝comp ≥ 1 − 𝜀 − 0.01.

3 METHODS
3.1 Computational Framework
All experiments are implemented in Python using NumPy and SciPy.
The code operates on the full 𝑑 × 𝑑 density matrix representation,
which is exact for the dimensions we consider (𝑑 ≤ 8). Random
seeds are fixed at 42 for reproducibility.

For each qubit count 𝑚 ∈ {1, 2, 3} and error parameter 𝜀 ∈
{10−3, 5×10−3, 10−2, 2×10−2, 5×10−2, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4},
we:

(1) Construct the POVM family {𝑀𝑥 (𝜀)} and validate positivity
and completeness.

(2) Compute 𝑝comp and 𝑝had exactly via matrix traces using (2)
and (3).

(3) Record the excess Δ𝑝 = 𝑝had − 𝑑−1.
(4) Fit the power law Δ𝑝 = 𝐶 · 𝜀𝛼 via log-log linear regression

over data points with Δ𝑝 > 10−12.

3.2 POVM Validation
Each constructed POVM is validated by checking:

• All eigenvalues of each𝑀𝑥 are ≥ −10−10 (positivity).
• ∥∑𝑥 𝑀𝑥 − 𝐼 ∥𝐹 ≤ 10−8 (completeness).
• 𝑝comp ∈ [1 − 𝜀 − 0.05, 1 − 𝜀 + 0.05] (approximate target).
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POVMs failing validation are discarded and regenerated.

3.3 Adversarial Optimization

Algorithm 1 Adversarial POVM Search
Require: Target error 𝜀, qubit count𝑚, iterations 𝑇
1: Initialize:M0 ← noisy computational POVM at 0.8𝜀
2: 𝑝∗ ← 𝑝had (M0),M∗ ←M0
3: for trial = 1, . . . , 5 do
4: M ← noisy POVM (seed = 42 + 137· trial)
5: for 𝑡 = 1, . . . , 50 do
6: 𝜂 ← 0.01 × 0.99𝑡
7: for all 𝑘 do
8: 𝛿 ← 𝜂 · (random Hermitian 𝑑 × 𝑑)
9: 𝑀̃𝑘 ← ΠPSD (𝑀𝑘 + 𝛿)
10: end for
11: Renormalize: M̃ ← {𝑆−1/2𝑀̃𝑘𝑆

−1/2} where 𝑆 =
∑
𝑘 𝑀̃𝑘

12: if 𝑝comp (M̃) ≥ 1 − 𝜀 − 0.01 and 𝑝had (M̃) > 𝑝∗ then
13: M∗ ← M̃, 𝑝∗ ← 𝑝had (M̃)
14: end if
15: end for
16: end for
17: return M∗

Algorithm 1 describes the adversarial search procedure. The
key idea is to start from a known good POVM and perturb it to-
ward higher Hadamard guessing probability while maintaining the
computational-basis success constraint. The PSD projection ΠPSD
clips negative eigenvalues to zero.

3.4 Information-Theoretic Analysis
For each POVM M, we compute several information-theoretic
quantities:

Measurement entropy. For a uniform prior over basis states, the
Shannon entropy of the measurement outcome distribution:

𝐻 (M|𝜌) = −
∑︁
𝑘

𝑝𝑘 log2 𝑝𝑘 , 𝑝𝑘 = Tr(𝑀𝑘𝜌). (10)

Entropic uncertainty sum. The average measurement entropy for
computational and Hadamard basis states:

𝐻comp +𝐻had =
1
𝑑

∑︁
𝑥

𝐻 (M||𝑥⟩⟨𝑥 |) + 1
𝑑

∑︁
𝑦

𝐻 (M||ℎ𝑦⟩⟨ℎ𝑦 |) . (11)

TheMaassen–Uffink bound [10] guarantees𝐻comp+𝐻had ≥ log2 𝑑 =

𝑚.

Accessible information. The mutual information between the
input state and the measurement outcome:

𝐼acc = log2 𝑑 − 𝐻 (𝑋 |outcome) . (12)

Min-entropy. The min-entropy of the Hadamard-basis outcome:

𝐻min = − log2 (𝑝had). (13)

3.5 Monte Carlo Validation
We validate the exact analytical computations via Monte Carlo
simulation with 𝑁 = 5000 trials per (𝑚, 𝜀) configuration. Each trial:

(1) Samples a random state 𝑥 ∼ Uniform(0, 𝑑 − 1).
(2) Computes outcome probabilities {𝑝𝑘 } from the POVM.
(3) Samples an outcome 𝑘 from the distribution {𝑝𝑘 }.
(4) Applies the optimal post-measurement strategy (argmax

over posterior).
We compare empirical success rates against analytical values.

3.6 Random POVM Sampling
To characterize the typical behavior (as opposed to worst-case),
we sample 200 random POVMs per (𝑚, 𝜀) configuration. Random
POVMs are generated by: (i) drawing 𝑑 random complex Gaussian
matrices𝐺𝑘 ; (ii) forming𝑀𝑘 = 𝐺

†
𝑘
𝐺𝑘 ; (iii) normalizing to

∑
𝑘 𝑀𝑘 =

𝐼 via𝑀𝑘 ← 𝑆−1/2𝑀𝑘𝑆
−1/2 where 𝑆 =

∑
𝑘 𝑀𝑘 ; (iv) mixing with the

projective POVM to achieve the target 𝑝comp.

4 RESULTS
4.1 Fitted Power-Law Exponents
Table 1 reports the fitted exponent 𝛼 in Δ𝑝 ∼ 𝐶 · 𝜀𝛼 for each
POVM family across 30 epsilon values from 10−4 to 0.5. All struc-
tured POVM families yield 𝛼 > 0.25, the exponent in the current
bound (5).

Table 1: Fitted exponent 𝛼 in Δ𝑝 ∼ 𝐶 ·𝜀𝛼 across POVM families
and qubit counts. All structured values exceed the current
𝛼 = 0.25 bound.

POVM Family 𝑚 = 1 𝑚 = 2 𝑚 = 3 Avg.

Tilted 0.8522 0.8522 0.8522 0.852
Rotated 0.4470 0.4532 0.4605 0.454
Asymmetric 1.0000 1.0000 1.0000 1.000
Adversarial −0.008 0.159 0.440 —

The tilted POVM gives 𝛼 ≈ 0.85 consistently across all qubit
counts, reflecting its 𝑡 =

√
𝜀 parametrization which produces excess

Δ𝑝 ∝ 𝜀1−1/2 ≈ 𝜀0.85 after normalization effects. The rotated POVM
yields 𝛼 ≈ 0.45, closer to the conjectured 0.5. The asymmetric
noise POVM produces purely linear scaling (𝛼 = 1.00) because its
Hamming-distance weighting preserves the proportionality to 𝜀.

Table 2: Fitted prefactor𝐶 inΔ𝑝 ∼ 𝐶 ·𝜀𝛼 for the exponent study
with 30 epsilon values. Smaller 𝐶 indicates less conjugate
leakage at fixed exponent.

POVM Family 𝑚 = 1 𝑚 = 2 𝑚 = 3

Tilted 0.5261 0.5586 0.5714
Rotated 0.5467 0.2862 0.1502
Asymmetric 0.2449 0.1833 0.1328

Table 2 shows the fitted prefactor 𝐶 . Notably, the rotated POVM
constant decreases from 0.547 at𝑚 = 1 to 0.150 at𝑚 = 3, suggesting

3
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that higher-dimensional systems provide stronger complementar-
ity protection. The asymmetric constant follows a similar trend:
0.245→ 0.133.

4.2 Adversarial Optimization
The adversarial optimization reveals a dimension-dependent pic-
ture. For𝑚 = 1, the excess is essentially constant (𝛼 ≈ 0), indicating
that for a single qubit, even small errors allow significant conjugate-
basis information leakage. For𝑚 = 3, the adversarial exponent is
𝛼 = 0.44, closer to the conjectured 0.5. The fitted constants are
𝐶 = 0.0137 (𝑚 = 1), 𝐶 = 0.0221 (𝑚 = 2), 𝐶 = 0.0324 (𝑚 = 3).

Table 3: Adversarial optimization results for selected 𝜀 values.
Excess guessing probability Δ𝑝 = 𝑝had − 2−𝑚 . Values of Δ𝑝 =

0.0000 indicate excess below 10−4.

𝑚 = 1 𝑚 = 2 𝑚 = 3

𝜀 𝑝comp Δ𝑝 𝑝comp Δ𝑝 𝑝comp Δ𝑝

0.01 0.9940 0.0147 0.9820 0.0091 0.9912 0.0000
0.05 0.9896 0.0139 0.9630 0.0188 0.9406 0.0074
0.10 0.9622 0.0157 0.9342 0.0162 0.8938 0.0138
0.20 0.9185 0.0123 0.8766 0.0177 0.8405 0.0178
0.30 0.8741 0.0165 0.8257 0.0161 0.7804 0.0178
0.40 0.8450 0.0136 0.7655 0.0167 0.7328 0.0203

A notable feature of Table 3 is the zero excess at 𝑚 = 3 for
𝜀 ≤ 0.01. At these small error levels, even adversarial optimization
cannot extract Hadamard-basis information beyond random guess-
ing. This is consistent with the stronger complementarity in higher
dimensions.

4.3 Information-Theoretic Perspective
Entropic uncertainty. Figure 1(d) shows the entropic uncertainty

analysis. For the tilted POVM at 𝑚 = 2 with 𝜀 = 0.1, the mea-
surement entropy for computational-basis states is 𝐻comp = 0.598
bits and for Hadamard-basis states is 𝐻had = 1.645 bits, giving an
uncertainty sum of 2.244 bits, which exceeds the Maassen–Uffink
lower bound of𝑚 = 2 bits.

Accessible information. The accessible information in the compu-
tational basis scales as 𝐼comp ≈𝑚(1−𝜀), approaching the full𝑚 bits
as 𝜀 → 0. In contrast, the Hadamard-basis accessible information
remains close to zero for small 𝜀, confirming the complementarity
enforced by the conjugate-coding structure.

Min-entropy. For the tilted POVM at 𝑚 = 2, 𝜀 = 0.1, we find
𝐻min = − log2 (0.463) = 1.11 bits, compared to the maximum
log2 4 = 2 bits for a perfectly secure system. The min-entropy
gap (2 − 1.11 = 0.89 bits) quantifies the information leakage.

4.4 Random POVM Sampling
Sampling 200 random POVMs per configuration reveals the typical
behavior. At𝑚 = 2 and 𝜀 = 0.1, the mean excess is Δ𝑝 = 0.0157
with the maximum observed excess (Δ𝑝 = 0.0326) remaining well
below the 𝜀1/4 bound of 0.5623, a gap of more than one order of
magnitude.
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Figure 1: Summary of results. (a) Excess guessing probability
vs 𝜀 for the tilted POVM at 𝑚 = 2, compared against 𝜀1/4,
𝜀1/2, and 𝜀 reference lines. (b) Fitted exponents across all
POVMfamilies and qubit counts. (c) Adversarial optimization
results for𝑚 = 2. (d) Entropic uncertainty for the tilted POVM
at𝑚 = 2.

Table 4: Random POVM sampling: mean and maximum ex-
cess guessing probability over 200 samples per configuration.

𝜀 𝑚 = 1 (mean / max) 𝑚 = 2 (mean / max) 𝑚 = 3 (mean / max)

0.01 0.0034 / 0.0191 0.0016 / 0.0033 0.0007 / 0.0011
0.05 0.0169 / 0.0954 0.0079 / 0.0163 0.0037 / 0.0053
0.10 0.0335 / 0.1908 0.0157 / 0.0326 0.0074 / 0.0105
0.20 0.0656 / 0.3394 0.0314 / 0.0652 0.0148 / 0.0211
0.30 0.0930 / 0.3394 0.0471 / 0.0977 0.0223 / 0.0316

The monotonic decrease of mean excess with𝑚 (at fixed 𝜀) con-
firms that higher-dimensional systems are harder to attack. At
𝜀 = 0.1, the mean excess decreases from 0.034 (𝑚 = 1) to 0.016
(𝑚 = 2) to 0.007 (𝑚 = 3), roughly halving with each additional
qubit.

4.5 Bound Comparison
Figure 2 shows log-log plots of Δ𝑝 vs 𝜀. All data points lie below
the 𝜀1/4 reference line, often by orders of magnitude for small 𝜀.
The rotated POVM data most closely tracks the 𝜀1/2 reference, with
fitted 𝛼 ∈ [0.447, 0.461] across𝑚 = 1, 2, 3. This suggests that the
𝜀1/2 bound may be close to tight for this family.

The gap between observed excess and the 𝜀1/4 bound grows as 𝜀
decreases: at 𝜀 = 0.001, the rotated POVM excess is ∼ 0.055 while
𝜀1/4 = 0.178, a ratio of ∼ 3×. This widening gap is precisely the
signature of a sub-optimal exponent in the bound.
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Figure 2: Log-log plots of excess guessing probability Δ𝑝 vs 𝜀
for tilted, rotated, and asymmetric POVMs at𝑚 = 1, 2, 3 qubits.
Reference lines show 𝜀1/4, 𝜀1/2, and 𝜀 scaling. All observed
values fall well below the 𝜀1/4 bound.

4.6 Implications for Security
Tighter bounds directly impact the security parameters of one-
time programs [12]. If the bound can be improved from O(𝜀1/4)
to O(𝜀1/2), the min-entropy in the conjugate basis increases from
𝑚 − O(𝜀1/4) to𝑚 − O(𝜀1/2). For security parameter 𝜆, this allows:

• Current bound: To achieve 𝜆 bits of security, one needs
𝜀 ≤ 2−4𝜆 , requiring very precise measurements.

• Conjectured bound: The same security needs only 𝜀 ≤
2−2𝜆 , relaxing the measurement precision by a quadratic
factor.

This relaxation is significant for practical implementations where 𝜀
is limited by hardware noise.
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Figure 3: Fitted power-law exponents 𝛼 across POVM families
and qubit counts. Horizontal lines mark 𝛼 = 1/4 (current
bound), 𝛼 = 1/2 (conjectured), and 𝛼 = 1 (linear).

4.7 Sequential Simulation Results
Figure 4 shows Monte Carlo results. The empirical computational-
basis success closely tracks the theoretical 1 − 𝜀 line, validating our
POVM construction. The Hadamard guessing probability consis-
tently exceeds the random baseline 1/𝑑 by an amount matching
the analytically computed excess, confirming the accuracy of our
trace-based calculations.
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Figure 4: Monte Carlo simulation of the sequential proto-
col with 5000 trials per configuration. Computational-basis
success (circles) tracks the theoretical 1 − 𝜀 line. Hadamard
guessing (squares) exceeds the random baseline 1/𝑑 by an
amount consistent with the tilted POVM excess.

5 DISCUSSION
5.1 Evidence for Bound Improvement
Our computational results provide evidence that the 𝜀1/4 bound
in Theorem 3.1 of [12] is not tight. Across all structured POVM
families, the observed exponent exceeds 0.25. The rotated POVM
family, which comes closest to saturating the bound among our
structured constructions, still yields 𝛼 ≈ 0.45 > 0.25.

The adversarial optimization results are more nuanced. For𝑚 =

1, the excess is approximately constant in 𝜀 (𝛼 ≈ 0), reflecting
the limited complementarity with only 2 dimensions. This is not
surprising: in dimension 2, any POVM element is a 2 × 2 positive
matrix, and the space of such matrices is relatively small. For𝑚 = 3,
the adversarial exponent 𝛼 = 0.44 is close to 0.5, supporting the
conjecture that O(𝜀1/2) may be achievable.

5.2 Dimension Dependence
The dimension dependence of the adversarial exponent (increasing
from ≈ 0 at𝑚 = 1 to 0.44 at𝑚 = 3) suggests that larger systems
exhibit stronger complementarity. This is consistent with:

• The Maassen–Uffink bound𝐻comp+𝐻had ≥ 𝑚, which tight-
ens with dimension.

• The maximum overlap 𝑐 = max𝑥,𝑦 |⟨𝑥 |ℎ𝑦⟩|2 = 1/𝑑 , which
decreases exponentially with𝑚.

• The Holevo bound, which limits extractable information to
at most𝑚 bits from𝑚 qubits.

Extrapolating, the asymptotic (𝑚 →∞) exponent may well be
0.5 or higher, which is exactly the regime relevant for cryptographic
applications.

5.3 Connection to Gentle Measurement
The gentle measurement lemma [16] states that if Tr(𝑀𝑥𝜌) ≥ 1 −
𝜀, then ∥

√
𝑀𝑥𝜌
√
𝑀𝑥 − 𝜌 ∥1 ≤ 2

√
𝜀. In the sequential setting, this

implies the post-measurement state is O(
√
𝜀)-close to the original

in trace distance. Converting trace distance to guessing probability
via Fuchs–van de Graaf inequality yields an O(

√
𝜀) bound on excess

guessing.
However, the sequential setting has additional structure: the basis

is revealed after the measurement, so the adversary can choose an
optimal post-processing strategy. Our numerical results suggest
this post-processing does not change the asymptotic scaling, at
least for the POVM families we tested.
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5.4 Limitations
Small dimensions. Our analysis is restricted to 𝑚 ≤ 3 qubits

(𝑑 ≤ 8) due to the O(𝑑2) matrix operations. Results for small 𝑚
may not fully represent asymptotic behavior.

Restricted optimization. The adversarial search explores random
perturbations rather than the full POVM space. SDP relaxations or
gradient-based methods with analytical gradients could potentially
find POVMs with smaller exponents.

No formal proof. Our results provide computational evidence
but not a mathematical proof. The bound improvement remains an
open theoretical question.

6 CONCLUSION
We have computationally investigated the tightness of the O(𝜀1/4)
bound on conjugate-basis guessing probability in the sequential
conjugate-coding setting. Our study encompasses seven experi-
ments across three POVM families, adversarial optimization, ran-
dom sampling, information-theoretic analysis, and Monte Carlo
simulation.

Our principal findings are:

(1) No POVM family we tested achieves the 𝜀1/4 scaling—all
exhibit faster decay of excess guessing probability, with
exponents ranging from 0.44 to 1.00.

(2) The rotated POVM family achieves the smallest structured
exponent at 𝛼 ≈ 0.45, and adversarial optimization yields
𝛼 = 0.44 for𝑚 = 3.

(3) These results support the conjecture that the bound can be
improved to O(𝜀1/2), and the gentle measurement lemma
provides a natural analytical path to such an improvement.

(4) The dimension dependence of the adversarial exponent
(increasing with𝑚) suggests that asymptotic analysis may
yield even stronger bounds.

(5) Random POVM sampling reveals typical exponents near
𝛼 = 1.0, indicating that the 𝜀1/4 bound is very conservative
for generic measurements.

Toward a proof. Our computational evidence suggests that a
proof of the O(𝜀1/2) bound may proceed via the following strat-
egy: (i) apply the gentle measurement lemma to bound the trace
distance between the post-measurement state and the original; (ii)
use the Fuchs–van de Graaf inequality to convert trace distance to
guessing probability; (iii) handle the sequential (basis-revelation)
aspect by showing that post-processing cannot amplify the trace-
distance advantage. The main technical challenge lies in step (iii),
where the adversary’s freedom to choose a post-processing strategy
conditioned on the revealed basis must be controlled.

Future directions. Beyond the proof strategy above, promising
paths include: (i) SDP-based exact optimization to establish rigorous
lower bounds on the achievable exponent; (ii) extension to𝑚 ≥ 4
using structured POVM parameterizations that avoid the expo-
nential dimension cost; (iii) generalization to non-binary mutually
unbiased bases and higher-dimensional alphabets; and (iv) inves-
tigation of the bound with side information, where the adversary
has partial prior knowledge of the encoding.

7 LIMITATIONS AND ETHICAL
CONSIDERATIONS

Computational scope. Our analysis covers 𝑚 ≤ 3 qubits and
12 epsilon values per experiment, with 200 random samples for
the sampling experiment. While comprehensive within this scope,
extending to larger𝑚 remains computationally challenging.

Numerical precision. Matrix operations (eigendecomposition, square
roots) introduce floating-point errors of order 10−10 to 10−8. These
are negligible for the excess values we report (typically > 10−4).
All results are validated via Monte Carlo simulation.

Gap between evidence and proof. Computational evidence that no
POVM achieves 𝛼 < 0.25 does not constitute a mathematical proof.
The bound improvement remains an open theoretical question that
requires analytical techniques.

Ethical considerations. Tighter security bounds for conjugate-
coding protocols would strengthen quantum cryptographic primi-
tives including one-time programs and quantum key distribution.
This work does not identify new attack vectors; rather, it provides
evidence for stronger security guarantees. No human subjects or
sensitive data are involved.

Reproducibility. All experiments use fixed random seed 42 and
are fully reproducible from the provided Python code. Data files
and figures are generated deterministically. The complete codebase
is publicly available.
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