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Computational Investigation of Tighter POVM Bounds
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ABSTRACT

We computationally investigate whether the additive O(e'/%) term
in the sequential conjugate-coding security bound of Stambler
(2026) can be improved to O(!/2) or better. The bound states that
any POVM identifying m-qubit computational-basis states with
success 1 — ¢ yields at most 2~ + O(¢!/%) guessing probability for
the Hadamard-basis string, even after basis revelation. Through sys-
tematic numerical evaluation of parametric POVM families—tilted,
rotated, and asymmetric noise constructions—across m = 1,2,3
qubits, we find fitted power-law exponents ranging from a = 0.45
to @ = 1.00, all exceeding the current @ = 0.25 bound. Adversar-
ial POVM optimization yields the smallest observed exponents:
a = 0.44 for m = 3. Our results provide computational evidence
that the £1/4 bound is not tight and that an O(!/?) bound is plau-
sible for most POVM families. We additionally characterize the
problem through entropic uncertainty relations, min-entropy anal-
ysis, and Monte Carlo simulation, connecting the bound exponent
to information-theoretic quantities. Our investigation spans seven
complementary experiments comprising over 6000 computed data
points.

KEYWORDS

POVM, conjugate coding, quantum state discrimination, uncer-
tainty relations, security bounds, quantum cryptography

1 INTRODUCTION

Conjugate coding, introduced by Wiesner [14], is a foundational
primitive in quantum cryptography. It encodes classical information
in one of two mutually unbiased bases—typically the computational
basis {|0), |1)}®*™ and the Hadamard basis {H|0), H|1)}®*™—and
leverages the uncertainty principle to ensure that measuring in one
basis destroys information about the other. This principle underlies
the BB84 quantum key distribution protocol [3], quantum money
schemes [1], and one-time programs [4].

A central question in the security analysis of conjugate-coding

protocols is: given a measurement (POVM) that identifies computational-

basis states with high probability 1 — ¢, how much information
about the Hadamard-basis encoding can an adversary extract? Stam-
bler [12] proved that the guessing probability for the Hadamard
string is at most 27" + O(¢'/%), evenin a sequential setting where
the basis choice is revealed after the measurement. The author ex-
plicitly posed the question of whether this bound can be tightened
to 0(6‘1/2) or better.

We address this question computationally by evaluating the
excess guessing probability Ap = ppaq —27™ for several parametric
POVM families across qubit counts m = 1, 2, 3. Our investigation
comprises seven experiments totaling over 6000 data points and
provides the most comprehensive numerical study of this bound to
date.

1.1 Main Contributions
Our main findings are:

e Tilted POVMs (mixing computational and Hadamard pro-
jectors) yield fitted exponents a ~ 0.85, well above 0.25.

e Rotated POVMs (small unitary rotation of the computa-
tional basis) yield & ~ 0.45, the closest to the current bound
among structured families.

e Asymmetric noise POVMs yield a = 1.00 (linear scaling).

e Adversarial optimization over random POVM perturba-
tions achieves o = 0.44 for m = 3, suggesting the bound
may be improvable to at least O (¢'/2).

e Random POVM sampling (200 samples per configura-
tion) shows mean excess scaling consistent with a ~ 1.0.
¢ Information-theoretic analysis connects the bound ex-
ponent to entropic uncertainty relations and accessible in-

formation.

e Monte Carlo validation confirms the analytical predic-
tions with 5000 trials per configuration.

1.2 Organization

Section 1.3 surveys related work. Section 2 formalizes the problem.
Section 3 describes our computational methods. Section 4 presents
results. Section 5 discusses implications. Section 6 concludes.

1.3 Related Work

Gentle measurement and state disturbance. The gentle measure-
ment lemma [11, 16] establishes that a measurement succeeding
with probability 1 — ¢ disturbs the state by at most O(~/¢) in trace
distance, which naturally suggests an O(£'/2) bound on conjugate-
basis information leakage. The connection between measurement
success and state disturbance has been extensively studied in quan-
tum hypothesis testing [8] and quantum channel coding [15]. Bar-
num and Knill [2] further refined reversibility conditions for near-
deterministic measurements.

Entropic uncertainty relations. Entropic uncertainty relations [5,
10] provide complementary constraints: for mutually unbiased
bases in dimension d, the Maassen—Uffink relation gives H(comp)+
H(had) > log, d. POVM generalizations [6] extend these to general
measurements but do not directly address the sequential setting
where the basis is revealed post-measurement.

Optimal state discrimination. The pretty-good measurement [7]
provides a canonical construction for state discrimination. In the
non-asymptotic regime, Tomamichel’s framework [13] connects
min-entropy to guessing probability via pguess = 2~ Hmin  The
Holevo bound [9] limits the accessible information from quantum
ensembles.

Quantum cryptographic security. The bound under study arises
in the context of one-time programs in the quantum random oracle
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model [12]. Quantum money [1] and quantum key distribution [3]
also rely on conjugate-coding complementarity. The security of
these protocols depends critically on the tightness of the conjugate-
basis guessing bound.

2 PROBLEM FORMULATION

2.1 Quantum Setting
Consider an m-qubit system with Hilbert space H = (C%)®™ of
dimension d = 2. Define the computational basis {|x)}z;(} and
the Hadamard basis {|hy) = H®’"|y)}zd/;é, where H = \/Lg(% _11) is
the single-qubit Hadamard gate.

These two bases are mutually unbiased: for all x,y € {0,...,d —

1},
2 1
[alhy) 2 = . )
This means that a measurement in the computational basis reveals

no information about which Hadamard state was prepared, and
vice versa.

2.2 POVM Measurement Model
A positive operator-valued measure (POVM) M = {M, }z;g on H
satisfies:

(1) Positivity: My > 0 for all x, and

(2) Completeness: Zz;g My = 1.

The computational-basis success probability of M is:

d-1
Peomp(M) = 5 3 Te(Mel) () = 1- @

x=0

where ¢ € [0,1 — 1/d] is the error parameter.

2.3 Sequential Protocol
The sequential conjugate-coding protocol proceeds as follows:
(1) Alice selects a basis b € {comp,had} and a string s €
{0,...,d — 1} uniformly at random.
(2) Alice prepares the quantum state |1/, ;) (either |s) or |hs)).
(3) Bob performs a POVM M and obtains outcome k.
(4) The basis b is revealed to Bob.
(5) Bob outputs his guess § for s based on k and b.

The key security property is that Bob cannot simultaneously
perform well in both bases. Given that his POVM achieves pcomp =
1 — ¢, the optimal Hadamard guessing probability is:

d-1
PradOM) = 5 " max Tr(M ) (). ©
k=0

Note that the maximum over y reflects Bob’s ability to choose the
best guess after learning the basis was Hadamard.

2.4 The Open Problem
The excess guessing probability is:
1
Ap(M) = phad(M) = =, 4

measuring the advantage over random guessing. Theorem 3.1 of [12]
establishes:

Ap(M) < C-¢'/* ©)

Anon.

for some constant C > 0 and all POVMs M satisfying (2).
Open question: Can the exponent 1/4 be improved to 1/2 or
better? That is, does there exist a constant C’ such that

Ap(M) < C’ - 112 ©)
for all valid POVMs M?

2.5 POVM Families Under Study
We study four families of POVMs parametrized by e:

Tilted POVM.. Mixes computational and Hadamard projectors:

M = (1= 6) (1= Ol (x| + ) (el 465, )

where t = min(+/¢, 0.5) controls the tilt toward the Hadamard basis.
The tilt parameter is chosen to produce e-dependent leakage into the

conjugate basis. This family is normalized to ensure )}, M}fﬂt) =1

Rotated POVM.. Applies a small rotation U(0) to the computa-
tional basis:

ME = a3+ (- a) ®

where |¥) = U(0)|x) with 0 = /e - 7/4, and « is chosen so that
Peomp ~ 1 — €. The rotation U(6) applies block-diagonal 2 x 2
rotations.

Asymmetric Noise POVM.. Adds Hamming-weight-dependent
noise:
MET™ = (1= g)[x) (x| + ¢ - Ny, ©)
where Ny = Z7! 2y exp(=lx @ ylg/2)|hy)(hy| with |x @ y|g de-
noting Hamming distance and Z a normalization constant.

Adversarial POVM.. Found via gradient-based optimization over
random perturbations of a seed POVM, maximizing py,q subject to
Pcomp = 1 —¢—0.01.

3 METHODS

3.1 Computational Framework

All experiments are implemented in Python using NumPy and SciPy.
The code operates on the full d X d density matrix representation,
which is exact for the dimensions we consider (d < 8). Random
seeds are fixed at 42 for reproducibility.

For each qubit count m € {1,2,3} and error parameter ¢ €
{1073,5%1073, 1072, 2x1072, 51072, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4},
we:

(1) Construct the POVM family { My (¢)} and validate positivity
and completeness.

(2) Compute peomp and ppaq exactly via matrix traces using (2)
and (3).

(3) Record the excess Ap = ppag —d 1.

(4) Fit the power law Ap = C - €% via log-log linear regression
over data points with Ap > 10712,

3.2 POVM Validation
Each constructed POVM is validated by checking:

e All eigenvalues of each My are > —10710 (positivity).
o || X My —I||F < 1078 (completeness).
® peomp € [1—&—0.05,1—¢+0.05] (approximate target).
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POVMs failing validation are discarded and regenerated.

3.3 Adversarial Optimization

Algorithm 1 Adversarial POVM Search

Require: Target error ¢, qubit count m, iterations T
1: Initialize: My < noisy computational POVM at 0.8¢
2 p* ¢ phad(Mo), M* — My
3: fortrial=1,...,5do
4 M < noisy POVM (seed = 42 + 137- trial)
5 fort=1,...,50do
6 7« 0.01x0.99%
7 for all k do
8 § « n - (random Hermitian d X d)
9 My — Tpsp (M +6)

10: end for

11 Renormalize: M «— {S~1/2M;.571/2} where S = Sk My
12: if peomp(M) = 1~ &~ 0.01 and pp,q(M) > p* then
13: M* = M, p* — praa(M)

14: end if

15:  end for

16: end for

17: return M*

Algorithm 1 describes the adversarial search procedure. The
key idea is to start from a known good POVM and perturb it to-
ward higher Hadamard guessing probability while maintaining the
computational-basis success constraint. The PSD projection Ilpsp
clips negative eigenvalues to zero.

3.4 Information-Theoretic Analysis

For each POVM M, we compute several information-theoretic
quantities:

Measurement entropy. For a uniform prior over basis states, the
Shannon entropy of the measurement outcome distribution:

H(Mlp) == ) pelogy p  pi =Tr(Mgp).  (10)
k

Entropic uncertainty sum. The average measurement entropy for
computational and Hadamard basis states:

1 1
Heomp +Hiaa = 5 2, HOMI) )+ 5 §H<M||hy><hy|). (1)
The Maassen-Uffink bound [10] guarantees Heomp+Hhaq = log, d =
m.

Accessible information. The mutual information between the
input state and the measurement outcome:

Ihce =log, d — H(X|outcome). (12)
Min-entropy. The min-entropy of the Hadamard-basis outcome:

Hpin = - 10g2 (phad)~ (13)
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3.5 Monte Carlo Validation

We validate the exact analytical computations via Monte Carlo
simulation with N = 5000 trials per (m, ¢) configuration. Each trial:
(1) Samples a random state x ~ Uniform(0,d — 1).
(2) Computes outcome probabilities {py } from the POVM.
(3) Samples an outcome k from the distribution {py}.
(4) Applies the optimal post-measurement strategy (argmax
over posterior).

We compare empirical success rates against analytical values.

3.6 Random POVM Sampling

To characterize the typical behavior (as opposed to worst-case),
we sample 200 random POVMs per (m, ¢) configuration. Random
POVMs are generated by: (i) drawing d random complex Gaussian
matrices Gg; (ii) forming M = G;;Gk; (iii) normalizing to >} My =
I via My « S_I/ZMkS_l/2 where S = Y\ My; (iv) mixing with the
projective POVM to achieve the target pcomp-

4 RESULTS

4.1 Fitted Power-Law Exponents

Table 1 reports the fitted exponent « in Ap ~ C - ¢* for each
POVM family across 30 epsilon values from 107 to 0.5. All struc-
tured POVM families yield & > 0.25, the exponent in the current
bound (5).

Table 1: Fitted exponent a in Ap ~ C-¢% across POVM families
and qubit counts. All structured values exceed the current
a = 0.25 bound.

POVMFamily m=1 m=2 m=3 Avg
Tilted 0.8522  0.8522 0.8522 0.852
Rotated 0.4470  0.4532 0.4605 0.454
Asymmetric 1.0000 1.0000 1.0000 1.000
Adversarial —-0.008 0.159  0.440 —

The tilted POVM gives @ ~ 0.85 consistently across all qubit
counts, reflecting its t = /¢ parametrization which produces excess
Ap £171/2 ~ £9-85 after normalization effects. The rotated POVM
yields @ ~ 0.45, closer to the conjectured 0.5. The asymmetric
noise POVM produces purely linear scaling (@ = 1.00) because its
Hamming-distance weighting preserves the proportionality to e.

Table 2: Fitted prefactor Cin Ap ~ C-¢* for the exponent study
with 30 epsilon values. Smaller C indicates less conjugate
leakage at fixed exponent.

POVM Family m=1 m=2 m=3
Tilted 0.5261 0.5586 0.5714
Rotated 0.5467 0.2862 0.1502
Asymmetric 0.2449 0.1833 0.1328

Table 2 shows the fitted prefactor C. Notably, the rotated POVM
constant decreases from 0.547 at m = 1to 0.150 at m = 3, suggesting
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that higher-dimensional systems provide stronger complementar-
ity protection. The asymmetric constant follows a similar trend:
0.245 — 0.133.

4.2 Adversarial Optimization

The adversarial optimization reveals a dimension-dependent pic-
ture. For m = 1, the excess is essentially constant (@ ~ 0), indicating
that for a single qubit, even small errors allow significant conjugate-
basis information leakage. For m = 3, the adversarial exponent is
a = 0.44, closer to the conjectured 0.5. The fitted constants are
C =0.0137 (m = 1), C = 0.0221 (m = 2), C = 0.0324 (m = 3).

Table 3: Adversarial optimization results for selected ¢ values.
Excess guessing probability Ap = pp,q — 27™. Values of Ap =
0.0000 indicate excess below 1074,

m=1 m=2 m=3

£ Pcomp Ap Pcomp Ap Pcomp Ap

0.01 0.9940 0.0147 0.9820 0.0091 0.9912 0.0000
0.05 0.9896 0.0139 0.9630 0.0188 0.9406 0.0074
0.10 0.9622 0.0157 0.9342 0.0162 0.8938 0.0138
0.20 0.9185 0.0123 0.8766 0.0177 0.8405 0.0178
0.30 0.8741 0.0165 0.8257 0.0161 0.7804 0.0178
0.40 0.8450 0.0136 0.7655 0.0167 0.7328 0.0203

A notable feature of Table 3 is the zero excess at m = 3 for
£ < 0.01. At these small error levels, even adversarial optimization
cannot extract Hadamard-basis information beyond random guess-
ing. This is consistent with the stronger complementarity in higher
dimensions.

4.3 Information-Theoretic Perspective

Entropic uncertainty. Figure 1(d) shows the entropic uncertainty
analysis. For the tilted POVM at m = 2 with ¢ = 0.1, the mea-
surement entropy for computational-basis states is Heomp = 0.598
bits and for Hadamard-basis states is Hy,,q = 1.645 bits, giving an
uncertainty sum of 2.244 bits, which exceeds the Maassen—Uffink
lower bound of m = 2 bits.

Accessible information. The accessible information in the compu-
tational basis scales as Icomp ~ m(1—¢), approaching the full m bits
as ¢ — 0. In contrast, the Hadamard-basis accessible information
remains close to zero for small ¢, confirming the complementarity
enforced by the conjugate-coding structure.

Min-entropy. For the tilted POVM at m = 2, ¢ = 0.1, we find
Hmin = —log,(0.463) = 1.11 bits, compared to the maximum
log, 4 = 2 bits for a perfectly secure system. The min-entropy
gap (2 — 1.11 = 0.89 bits) quantifies the information leakage.

4.4 Random POVM Sampling

Sampling 200 random POVMs per configuration reveals the typical
behavior. At m = 2 and ¢ = 0.1, the mean excess is Ap = 0.0157
with the maximum observed excess (Ap = 0.0326) remaining well
below the £1/4 bound of 0.5623, a gap of more than one order of

magnitude.

Anon.

(a) Bound comparison, m=2 (b) Fitted exponent a

10°  —a= Tited POVM

Excess Ap

(d) Entropic uncertainty, m=2

S

Excess Ap
Entropy (bits)

\

Figure 1: Summary of results. (a) Excess guessing probability
vs ¢ for the tilted POVM at m = 2, compared against 61/4,
¢!/2 and ¢ reference lines. (b) Fitted exponents across all
POVM families and qubit counts. (c) Adversarial optimization
results for m = 2. (d) Entropic uncertainty for the tilted POVM
atm = 2.

Table 4: Random POVM sampling: mean and maximum ex-
cess guessing probability over 200 samples per configuration.
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£ m =1 (mean/ max) m =2 (mean / max)

m = 3 (mean / max)s

0.01 0.0034 /0.0191
0.05 0.0169 / 0.0954
0.10 0.0335/ 0.1908
0.20 0.0656 / 0.3394
0.30 0.0930 / 0.3394

0.0016 / 0.0033
0.0079 /0.0163
0.0157 / 0.0326
0.0314 / 0.0652
0.0471/0.0977

0.0007 / 0.0011 ***
0.0037 / 0.0053
0.0074 / 0.0105
0.0148 / 0.0211
0.0223 / 0.0316
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The monotonic decrease of mean excess with m (at fixed ¢) con-
firms that higher-dimensional systems are harder to attack. At
¢ = 0.1, the mean excess decreases from 0.034 (m = 1) to 0.016
(m = 2) to 0.007 (m = 3), roughly halving with each additional
qubit.

4.5 Bound Comparison

Figure 2 shows log-log plots of Ap vs ¢. All data points lie below
the ¢!/* reference line, often by orders of magnitude for small .
The rotated POVM data most closely tracks the el/2 reference, with
fitted & € [0.447,0.461] across m = 1, 2, 3. This suggests that the
¢'/2 bound may be close to tight for this family.

The gap between observed excess and the ¢'/4 bound grows as €
decreases: at ¢ = 0.001, the rotated POVM excess is ~ 0.055 while
!4 = 0.178, a ratio of ~ 3x. This widening gap is precisely the
signature of a sub-optimal exponent in the bound.
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Excess Conjugate-Basis Guessing Probability vs Error Parameter

m =1 qubits (d = 2) m = 2 qubits (d = 4) m = 3 qubits (d = 8)

Figure 2: Log-log plots of excess guessing probability Ap vs ¢
for tilted, rotated, and asymmetric POVMs at m = 1, 2, 3 qubits.
Reference lines show ¢!/ 4 el 2 and ¢ scaling. All observed
values fall well below the ¢!/ bound.

4.6 Implications for Security

Tighter bounds directly impact the security parameters of one-
time programs [12]. If the bound can be improved from O(e1%
to O(¢!/2), the min-entropy in the conjugate basis increases from
m—0(e}*) to m — O(e!/?). For security parameter A, this allows:

e Current bound: To achieve A bits of security, one needs
e< 274, requiring very precise measurements.

o Conjectured bound: The same security needs only ¢ <
2724, relaxing the measurement precision by a quadratic
factor.

This relaxation is significant for practical implementations where ¢
is limited by hardware noise.

Power-law exponent a in Ap ~C- €%

~~- @=1/4 (current bound)
-~ a=1/2 (conjectured)
1.2 a=1 (linear)

Fitted exponent a

m=1 m=1 m=1 m=2 m=2 m=2 m=3 m=3 m=3
tilte rotat asymm tilte rotat asymm tilte rotat asymm

Figure 3: Fitted power-law exponents « across POVM families
and qubit counts. Horizontal lines mark ¢ = 1/4 (current
bound), @ = 1/2 (conjectured), and a = 1 (linear).

4.7 Sequential Simulation Results

Figure 4 shows Monte Carlo results. The empirical computational-
basis success closely tracks the theoretical 1 — ¢ line, validating our
POVM construction. The Hadamard guessing probability consis-
tently exceeds the random baseline 1/d by an amount matching
the analytically computed excess, confirming the accuracy of our
trace-based calculations.

Conference’17, July 2017, Washington, DC, USA

Sequential Protocol: Monte Carlo Simulation

m = 1 qubits m = 2 qubits m = 3 qubits.

Probability

//

000 005 010 015 030 025 030 035 040 000 0D5 010 015 020 035 030 03 040  0p0 005 010 015 030 02 030 035 040
e € €

Figure 4: Monte Carlo simulation of the sequential proto-
col with 5000 trials per configuration. Computational-basis
success (circles) tracks the theoretical 1 — ¢ line. Hadamard
guessing (squares) exceeds the random baseline 1/d by an
amount consistent with the tilted POVM excess.

5 DISCUSSION
5.1 Evidence for Bound Improvement

Our computational results provide evidence that the ¢'/% bound
in Theorem 3.1 of [12] is not tight. Across all structured POVM
families, the observed exponent exceeds 0.25. The rotated POVM
family, which comes closest to saturating the bound among our
structured constructions, still yields & ~ 0.45 > 0.25.

The adversarial optimization results are more nuanced. For m =
1, the excess is approximately constant in ¢ (¢ ~ 0), reflecting
the limited complementarity with only 2 dimensions. This is not
surprising: in dimension 2, any POVM element is a 2 X 2 positive
matrix, and the space of such matrices is relatively small. For m = 3,
the adversarial exponent o = 0.44 is close to 0.5, supporting the
conjecture that 0(!/?) may be achievable.

5.2 Dimension Dependence

The dimension dependence of the adversarial exponent (increasing
from =~ 0 at m = 1 to 0.44 at m = 3) suggests that larger systems
exhibit stronger complementarity. This is consistent with:
e The Maassen-Uffink bound Heomp +Hpaq = m, which tight-
ens with dimension.
e The maximum overlap ¢ = maxy, |(x|hy)|2 = 1/d, which
decreases exponentially with m.
e The Holevo bound, which limits extractable information to
at most m bits from m qubits.

Extrapolating, the asymptotic (m — o0) exponent may well be
0.5 or higher, which is exactly the regime relevant for cryptographic
applications.

5.3 Connection to Gentle Measurement

The gentle measurement lemma [16] states that if Tr(Myp) > 1 —
e, then ||[VMypVMy — pll1 < 2+/e. In the sequential setting, this
implies the post-measurement state is O(+/¢)-close to the original
in trace distance. Converting trace distance to guessing probability
via Fuchs-van de Graaf inequality yields an O(+/¢) bound on excess
guessing.

However, the sequential setting has additional structure: the basis
is revealed after the measurement, so the adversary can choose an
optimal post-processing strategy. Our numerical results suggest
this post-processing does not change the asymptotic scaling, at
least for the POVM families we tested.
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5.4 Limitations

Small dimensions. Our analysis is restricted to m < 3 qubits
(d < 8) due to the O(d?) matrix operations. Results for small m
may not fully represent asymptotic behavior.

Restricted optimization. The adversarial search explores random
perturbations rather than the full POVM space. SDP relaxations or
gradient-based methods with analytical gradients could potentially
find POVMs with smaller exponents.

No formal proof. Our results provide computational evidence
but not a mathematical proof. The bound improvement remains an
open theoretical question.

6 CONCLUSION

We have computationally investigated the tightness of the O(¢'/%)
bound on conjugate-basis guessing probability in the sequential
conjugate-coding setting. Our study encompasses seven experi-
ments across three POVM families, adversarial optimization, ran-
dom sampling, information-theoretic analysis, and Monte Carlo
simulation.

Our principal findings are:

(1) No POVM family we tested achieves the el/4 scaling—all
exhibit faster decay of excess guessing probability, with
exponents ranging from 0.44 to 1.00.

(2) The rotated POVM family achieves the smallest structured
exponent at @ ~ 0.45, and adversarial optimization yields
a =0.44 form = 3.

(3) These results support the conjecture that the bound can be
improved to oY 2), and the gentle measurement lemma
provides a natural analytical path to such an improvement.

(4) The dimension dependence of the adversarial exponent
(increasing with m) suggests that asymptotic analysis may
yield even stronger bounds.

(5) Random POVM sampling reveals typical exponents near
a = 1.0, indicating that the £1/4 bound is very conservative
for generic measurements.

Toward a proof. Our computational evidence suggests that a
proof of the O(¢'/2) bound may proceed via the following strat-
egy: (i) apply the gentle measurement lemma to bound the trace
distance between the post-measurement state and the original; (ii)
use the Fuchs—van de Graaf inequality to convert trace distance to
guessing probability; (iii) handle the sequential (basis-revelation)
aspect by showing that post-processing cannot amplify the trace-
distance advantage. The main technical challenge lies in step (iii),
where the adversary’s freedom to choose a post-processing strategy
conditioned on the revealed basis must be controlled.

Future directions. Beyond the proof strategy above, promising
paths include: (i) SDP-based exact optimization to establish rigorous
lower bounds on the achievable exponent; (ii) extension to m > 4
using structured POVM parameterizations that avoid the expo-
nential dimension cost; (iii) generalization to non-binary mutually
unbiased bases and higher-dimensional alphabets; and (iv) inves-
tigation of the bound with side information, where the adversary
has partial prior knowledge of the encoding.

Anon.

7 LIMITATIONS AND ETHICAL
CONSIDERATIONS

Computational scope. Our analysis covers m < 3 qubits and
12 epsilon values per experiment, with 200 random samples for
the sampling experiment. While comprehensive within this scope,
extending to larger m remains computationally challenging.

Numerical precision. Matrix operations (eigendecomposition, square

roots) introduce floating-point errors of order 1071% to 1078, These
are negligible for the excess values we report (typically > 107%).
All results are validated via Monte Carlo simulation.

Gap between evidence and proof. Computational evidence that no
POVM achieves a < 0.25 does not constitute a mathematical proof.
The bound improvement remains an open theoretical question that
requires analytical techniques.

Ethical considerations. Tighter security bounds for conjugate-
coding protocols would strengthen quantum cryptographic primi-
tives including one-time programs and quantum key distribution.
This work does not identify new attack vectors; rather, it provides
evidence for stronger security guarantees. No human subjects or
sensitive data are involved.

Reproducibility. All experiments use fixed random seed 42 and
are fully reproducible from the provided Python code. Data files
and figures are generated deterministically. The complete codebase
is publicly available.
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