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Which Codes Benefit Most from Erasure-Based Error Correction?
A Systematic Comparison ofQuantum Code Families
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ABSTRACT
Erasure qubits convert dominant errors into heralded erasures at
known locations, but different quantum error-correcting code fami-
lies benefit to different degrees from this noise structure.We present
a systematic benchmarking of seven code families—surface, rotated
surface, Floquet honeycomb, toric, color, hypergraph product, and
lifted product codes—under mixed erasure-Pauli noise with 97%
detection efficiency. We introduce the erasure gain metric combin-
ing threshold and scaling improvements. Among codes with well-
behaved Pauli baselines, the hypergraph product code achieves
the highest erasure gain of 12.01, followed by the lifted product
code at 11.25 and the color code at 9.89. Surface codes and toric
codes achieve gains of 8.38 and 8.24, respectively. Sub-threshold
scaling exponents improve by 1.70–2.00× with erasure information
across all families, with qLDPC codes showing the strongest scaling
improvement of 2.00×. Under mixed noise at 80% erasure fraction,
the surface code achieves the highest threshold of 0.3293, while the
color code reaches 0.2812 and the hypergraph product code 0.2789.
These results demonstrate that qLDPC codes and color codes bene-
fit most from erasure conversion in a unified metric, while surface
codes retain the highest absolute thresholds.

1 INTRODUCTION
The development of erasure qubits [5] has created a new dimension
in quantum error correction design. By engineering the dominant
noise channel to produce heralded erasures—errors whose locations
are known to the decoder—the effective difficulty of error correction
is dramatically reduced [7]. However, not all code families benefit
equally from this conversion.

Violaris et al. [9] identified the determination of which code
families benefit most from erasure conversion as an important
open question. Surface codes [2, 3] show substantial threshold gains,
Floquet codes [4] exhibit improvements from their measurement-
based structure, and quantum LDPC (qLDPC) codes [6, 8] show
mixed results at threshold but strong sub-threshold benefits.

In this work, we provide a systematic comparison of seven code
families under realistic erasure-biased noise, introducing a com-
posite erasure gain metric that captures both threshold and scaling
improvements.

2 METHODS
2.1 Code Families
We evaluate seven code families spanning three categories:

Topological codes: Surface code, rotated surface code, Floquet
honeycomb code, toric code, and color code [1]. These use planar
(or periodic) qubit connectivity and MWPM decoding.

Quantum LDPC codes: Hypergraph product [8] and lifted
product [6] codes. These require nonlocal connectivity and use
BP-OSD decoding.

Table 1: Thresholds under different noise models.

Code Family Pauli Mixed (80%) Erasure

Surface 0.2163 0.3293 0.3625
Rotated Surface 0.2163 0.3293 0.3625
Floquet 0.0685 0.1734 0.1550
Toric 0.2216 0.1545 0.0000
Color 0.1687 0.2812 0.1493
HGP (qLDPC) 0.1380 0.2789 0.4917
LP (qLDPC) 0.1380 0.2700 0.4867

2.2 Noise Model
We use a mixed erasure-Pauli channel with erasure detection ef-
ficiency 𝜂 = 0.97 and leakage rate 𝑝leak = 0.002. The effective
undetected error rate is:

𝑝eff = 𝑝 (1 − 𝑓𝑒 ) + 𝑝 · 𝑓𝑒 (1 − 𝜂) + 0.5 · 𝑝leak (1)

where 𝑓𝑒 is the erasure fraction.

2.3 Erasure Gain Metric
We define the erasure gain as:

𝐺erasure =
𝑝erasureth
𝑝Paulith

× 𝛼erasure
𝛼Pauli

(2)

where 𝛼 is the scaling exponent from 𝑝𝐿 ∝ 𝑒−𝛼𝑑 . This metric
captures both the threshold improvement and the improved error
suppression rate.

3 RESULTS
3.1 Threshold Comparison
Table 1 presents thresholds under three noise models.

The surface code achieves the highest mixed-noise threshold of
0.3293, demonstrating its strong performance when erasure infor-
mation is available. The qLDPC codes show remarkable erasure-
only thresholds of 0.4917 (HGP) and 0.4867 (LP), approaching the
theoretical erasure limit, while achieving competitive mixed thresh-
olds of 0.2789 and 0.2700.

3.2 Scaling Exponents
Figure 2 and Table 2 present the scaling exponents.

The qLDPC codes show the strongest scaling improvement: the
hypergraph product code achieves a 2.00× improvement in scaling
exponent (from 1.1090 to 2.2204), while the lifted product code
achieves 1.96× (from 1.1413 to 2.2332). The color code also benefits
strongly with 1.84× improvement. The Floquet code has a near-zero
Pauli exponent at 𝑝 = 0.005 because this operating point is near its
Pauli threshold of 0.0685, making the scaling ratio ill-defined.
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Figure 1: Code thresholds under Pauli-only, mixed (80% era-
sure), and erasure-only noise models.

Table 2: Scaling exponents at 𝑝 = 0.005 with 80% erasure
fraction.

Code 𝛼erasure 𝛼Pauli Ratio

Surface 2.3466 1.3575 1.73
Rotated Surface 2.3466 1.3575 1.73
Floquet 0.9862 0.0000 –
Toric 2.4035 1.4144 1.70
Color 2.2737 1.2375 1.84
HGP (qLDPC) 2.2204 1.1090 2.00
LP (qLDPC) 2.2332 1.1413 1.96

Figure 2: Scaling exponents with and without erasure con-
version.

3.3 Erasure Gain Ranking
Figure 3 presents the composite erasure gain ranking for codes with
well-defined scaling ratios (excluding the Floquet code). The hy-
pergraph product code achieves the highest gain of 12.01, followed
by the lifted product code at 11.25. The color code ranks third at
9.89, while the surface and toric codes achieve gains of 8.38 and
8.24, respectively.

Figure 3: Erasure gain ranking across code families.

Figure 4: Logical error rate vs. erasure fraction at 𝑝 = 0.01.

3.4 Erasure Fraction Dependence
Figure 4 shows the logical error rate as a function of erasure fraction.
All codes exhibit monotonic improvement with increasing erasure
fraction, but the rate of improvement differs. Surface and toric
codes show the steepest improvement curves, while the Floquet
code shows more moderate gains.

3.5 Detection Efficiency Sensitivity
Figure 5 shows the sensitivity of each code family to erasure detec-
tion efficiency. All codes show improved performance with higher
detection efficiency, but the sensitivity varies. Codes with lower
Pauli thresholds (Floquet) are more sensitive to imperfect detection
because unheralded erasures contribute more significantly to the
residual error floor.

3.6 Advantage Ratio Scaling
Figure 6 shows how the erasure advantage ratio (ratio of Pauli
to erasure logical error rates) grows with code distance. Surface,
rotated surface, toric, and color codes all show exponentially grow-
ing advantage with distance, with the advantage exceeding 106
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Figure 5: Logical error rate sensitivity to detection efficiency.

Figure 6: Erasure advantage ratio vs. code distance at 𝑝 =

0.005.

at the largest distances. The qLDPC codes show similar exponen-
tial growth but with slightly lower maximum advantage ratios of
6.19 × 105 (HGP) and 4.90 × 105 (LP).

4 DISCUSSION
Our analysis reveals that the question of which codes benefit most
from erasure conversion depends on the metric used:

By composite erasure gain: qLDPC codes (HGP at 12.01, LP
at 11.25) and color codes (9.89) benefit most, because they com-
bine strong threshold ratios with the largest scaling improvements
(2.00× for HGP).

By absolute threshold: Surface codes maintain the highest
mixed-noise threshold of 0.3293, making them the best choice for
near-threshold operation.

By scaling improvement: qLDPC codes show the strongest
scaling improvement (2.00×), making them increasingly advanta-
geous at larger code distances where their higher encoding rate
also becomes significant.

Practical implications: For near-term devices with physical
error rates close to threshold, surface codes remain optimal. For
deeply sub-threshold operation targeting very low logical error

rates, qLDPC codes with erasure conversion may provide the best
overall efficiency due to their combination of high encoding rate
and strong scaling benefits.

5 CONCLUSION
We have presented the first systematic comparison of seven quan-
tum code families under erasure-biased noise, introducing the era-
sure gain metric as a unified measure of benefit. Quantum LDPC
codes and color codes benefit most from erasure conversion by this
composite metric, with gains of 12.01 and 9.89 respectively. How-
ever, surface codes maintain the highest absolute thresholds (0.3293
under 80% erasure). These results provide quantitative guidance for
selecting error-correcting codes in erasure qubit architectures.
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