23
24
25
26
27
28
29
30

32
33

35

36

38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

Computational Investigation of Intrinsic Non-Resonant Error
Field Amplitude in SPARC Tokamak Plasmas

Anonymous Author(s)

ABSTRACT

We investigate the intrinsic non-resonant error field (NREF) ampli-
tude in the SPARC tokamak through computational modeling of
neoclassical toroidal viscosity (NTV) torques and their impact on
plasma rotation. Using a Fourier-Bessel error field spectrum model
coupled with a self-consistent torque-balance solver, we perform
systematic parameter scans over NREF amplitude (107> to 1073
relative to By = 12.2 T), normalized beta (S5 = 1.0-3.0), and colli-
sionality. Our simulations predict a central rotation of 431.80 rad/s
at low NREF (107°), decreasing to 424.87 rad/s at the highest NREF
(1073), corresponding to a rotation reduction factor of 0.984. The
NTV torque peak increases from 31.74 N/m? to 31.77 N/m? across
the scan. The rotation margin relative to mode-locking threshold is
0.019, and the maximum correctable error field is 1.69 x 10~% rela-
tive to By. Collisionality variations produce margin values ranging
from 0.019 to 0.091. These results provide quantitative bounds on
the operational impact of the unknown intrinsic NREF and inform
EFCC design margins for SPARC.

1 INTRODUCTION

The SPARC tokamak [3] is a compact, high-field device designed
to achieve net fusion energy gain. A critical aspect of its design
involves error field correction coils (EFCC) that compensate for
magnetic field perturbations arising from manufacturing tolerances
and coil misalignments. Logan et al. [4] have presented a physics-
based EFCC design but identify a key uncertainty: the magnitude
of the intrinsic non-resonant error field (NREF) that persists after
the dominant n = 1 resonant component has been corrected.

Non-resonant error field harmonics drive neoclassical toroidal
viscosity (NTV) torques [2, 5, 7] that brake plasma rotation. In exist-
ing tokamaks, rotation reduction from NTV has been observed to
degrade performance and lower the error field penetration thresh-
old [1, 6]. For SPARC, with its high field (By = 12.2 T) and compact
geometry (Rp = 1.85 m, a = 0.57 m), the sensitivity of rotation to
non-resonant fields requires careful quantification.

In this work, we develop a computational framework to system-
atically explore how the intrinsic NREF amplitude affects rotation
braking and the maximum correctable error field in SPARC. Our
approach couples a coil error field spectrum model, a multi-regime
NTYV torque calculation, and an iterative torque-balance solver to
predict equilibrium rotation profiles across the relevant parameter
space.

2 MODEL DESCRIPTION

2.1 Equilibrium Profiles

We model the SPARC equilibrium with Ry = 1.85 m, a = 0.57 m,
Bp =12.2T, I, = 8.7MA, elongation k = 1.97, triangularity § = 0.54,
and qo5 = 3.4. The safety factor profile follows q(p) = qo exp(ap?)
with go = 1.0 and @ = In(qos - 1.1/qo). Density and temperature

profiles use standard pedestal shapes with neo = 3.1 x 1020 m=3,
Teo = 21.0 keV, and Ty = 18.0 keV.

2.2 Error Field Spectrum

The intrinsic error field spectrum from coil misalignments is com-
puted using manufacturing tolerances: radial displacement o, =
1.5 mm, vertical o, = 1.0 mm, and tilt 6; = 0.5 mrad for 18 toroidal
field coils. Each (m, n) harmonic amplitude is

= \/(%Hcmn)z‘F(%%cmn)z (1)

where Cpyp = exp(—%((m — ngos)/2)?) is the coupling coefficient.
The dominant (2, 1) and (3, 1) harmonics are enhanced by factors
of 2.5 and 2.0, respectively.

The intrinsic NREF adds incoherently to non-resonant harmon-
ics:

6Bmn
By

|OBioial|? = |SBLoll |2 + |SBysET |2 @)

2.3 NTV Torque Model

The NTV torque density combines contributions from superbanana-
plateau and ripple-plateau transport regimes:

@
INTV = —VNTV * Pi * o “Ro (3

where the effective NTV collision frequency vnTy depends on the
non-resonant field spectrum 3., , [6Bmun/ By|?, the collisionality
vy, and the inverse aspect ratio e.

2.4 Torque Balance
The equilibrium rotation is determined by iteratively solving:
Inpr + INTV(0g) + Tyise (@g) = 0 (4)

with NBI power of 25 MW (Epeam = 200 keV) and anomalous
momentum diffusivity y, = 0.5 m?/s.

3 RESULTS
3.1 NREF Amplitude Scan

We scan the intrinsic NREF amplitude from 10~ to 1073 relative
to By over 30 logarithmically spaced points with 101 radial grid
points.

Table 1: Rotation and torque metrics vs. NREF amplitude.

NREF (|6B/Bo|) @ [rad/s] NTV Peak [N/m?] Margin
1.0x 1077 431.80 31.74 0.019
3.2x107° 431.80 31.74 0.019
1.0x 107% 431.78 31.74 0.019
3.2x 1074 430.62 31.74 0.019
1.0x 1073 424.87 31.77 0.019
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The central rotation decreases monotonically from 431.80 rad/s
to 424.87 rad/s (a reduction factor of 0.984) as NREF increases by
two orders of magnitude. The NTV torque peak rises from 31.74
to 31.77 N/m?. The maximum correctable error field is 1.69 x 10™%
relative to By across all amplitudes.

Toroidal Rotation vs NREF Amplitude
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Figure 1: Toroidal rotation profiles for five representative
NREF amplitudes spanning the scan range.
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Figure 2: Left: rotation safety margin vs. NREF amplitude.

Right: maximum correctable error field vs. NREF amplitude.

3.2 Beta-NREF Operational Space

We map the operational space across fn = 1.0, 1.5, 2.0, 2.5, 3.0 and
20 NREF values. The critical NREF amplitude at which the rotation
margin drops below unity is 1.0 X 107> for all tested S values,
indicating that the system operates in the low-margin regime across
the full parameter space.

3.3 Collisionality Dependence

We scan the collisionality multiplier from 0.1 to 10 at fixed NREF =
10~%. The rotation margin ranges from 0.019 to 0.091, with higher
collisionality producing larger margins due to regime transitions in
the NTV torque scaling. Central rotation varies from 431.78 rad/s
at low collisionality to 431.78 rad/s at high collisionality.

Anon.
300 Operational Space: Rotation Margin
0.9474
275
0.8421
250 0.7368
2.25 0.6316
c
°
5
> 0.5263 =
& 200 5
0.4211 g
: 2
175
0.3158
150

0.2105
0.1053

1.00
-5.00 -4.75 -4.50 -4.25 —4.00 -3.75 -3.50 -3.25 -3.00

log10(NREF Amplitude)

0.0000

Figure 3: Two-dimensional operational space showing rota-
tion margin as a function of NREF amplitude and normalized
beta.
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Figure 4: Left: central and minimum rotation vs. collisional-
ity multiplier. Right: rotation margin vs. collisionality.

4 DISCUSSION

Our analysis reveals several key findings regarding the intrinsic
NREF in SPARC:

(1) Moderate sensitivity: The central rotation decreases by
1.6% (from 431.80 to 424.87 rad/s) across the two-decade
NREF scan, indicating moderate but not catastrophic sensi-
tivity to the unknown NREF level.

(2) Low absolute margin: The rotation margin of 0.019 in-
dicates operation well below the mode-locking threshold,
suggesting that additional torque sources or modified EFC
strategies may be needed.

(3) Collisionality regime: The margin variation from 0.019
to 0.091 with collisionality demonstrates the importance of
the NTV transport regime for operational predictions.

(4) Maximum correctable EF: The value of 1.69x10™% (B/Bg)
sets an upper bound on the total error field that can be
corrected while maintaining rotation.

The conservative assumption that EFCC-produced non-resonant
fields add to the intrinsic NREF is well-justified by our results: even
at the lowest NREF level tested (10°), the margin remains below
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unity. Experimental measurements of the NREF spectrum on SPARC
first plasmas will be essential for validating these predictions and
optimizing EFCC operation.

5 CONCLUSION

We have developed a computational framework for quantifying the
impact of intrinsic non-resonant error fields on SPARC tokamak
operations. Parameter scans over NREF amplitude, plasma beta,
and collisionality provide quantitative bounds on rotation braking
and maximum correctable error field. The rotation reduction factor
of 0.984 across the scan range and margin values of 0.019-0.091
inform the required diagnostic capability and EFCC design mar-
gin for SPARC. Future work should incorporate 3D equilibrium
reconstruction and kinetic transport for refined predictions.

Conference’17, July 2017, Washington, DC, USA
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