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ABSTRACT
Micrometric three-dimensional silica helices observed in agate and
chalcedony present an open problem regarding their abiotic for-
mation mechanism. We computationally evaluate three candidate
processes: diffusion-limited aggregation (DLA), reaction-diffusion
with Turing instability, and fibrous growth with lattice-mismatch
twist. DLA produces fractal structures (dimension 1.455) with helic-
ity 0.026, failing to generate true helices. Reaction-diffusion yields
planar spirals (dominant wavelength 28.0) but not 3D helices. Fi-
brous growth produces helical structures in 8.0% of simulations with
racemic chirality (right: 25%, 𝑝 = 0.289). Morphometric discrim-
inant analysis separating agate helices, biomorphs, and biogenic
spirals achieves 83.0% accuracy, with Si/Fe ratio (weight−0.606) and
regularity (0.693) as the strongest discriminators. Reaction-diffusion
scores highest overall (0.400), followed by fibrous growth (0.389)
and DLA (0.280), though no single mechanism fully reproduces all
observed characteristics.

1 INTRODUCTION
Spiral and helical morphologies are common biosignatures in the ge-
ological record, observed in ammonites, gastropods, and microbial
stalks. However, similar micrometric helices have been reported in
agate and chalcedony that appear to be abiotic in origin [1]. Their
composition—silica with traces of iron—and their morphological
resemblance to silica-carbonate biomorph nanorod assemblies [2]
raise the fundamental question of what physicochemical pathway
generates these structures.

This problem has implications for astrobiology and paleontology,
as the inability to distinguish abiotic helices from biogenic spirals
complicates the interpretation of putative microfossils [3, 4].

We evaluate three candidate mechanisms: (1) diffusion-limited
aggregation (DLA) [6] with anisotropic attachment, where silica
nanoparticles aggregate under diffusion with preferential attach-
ment along crystallographic axes; (2) reaction-diffusionwith Turing-
type instability [5], where coupled silica polymerization and iron-
catalyzed reactions produce periodic structures; and (3) fibrous
growth with twist, where oriented silica fiber growth with lattice-
mismatch-induced twist generates helical morphologies.

2 METHODS
2.1 Diffusion-Limited Aggregation
We simulate DLA with 500 particles on a 3D lattice with anisotropic
sticking probabilities reflecting crystallographic preferences. Fractal
dimension is computed via box-counting, and helicity is quantified
from the signed torsion of the aggregate backbone.

2.2 Reaction-Diffusion Model
A two-component reaction-diffusion system couples silica concen-
tration 𝑢 and iron catalyst 𝑣 with Turing-type kinetics on a 2D grid.
Pattern metrics include dominant wavelength via FFT, amplitude,
and curl for spiral detection.

2.3 Fibrous Growth with Twist
Silica fiber growth is modeled with twist rate controlled by lat-
tice mismatch. A parameter sweep covers 12 twist rates (0.1–5.0)
and 10 noise levels (0.01–0.3), generating 120 configurations. Helix
quality, pitch, and radius are measured. Chirality statistics use 100
independent fibers.

2.4 Morphometric Discrimination
We generate synthetic datasets of agate helices (𝑛 = 100), silica-
carbonate biomorphs (𝑛 = 100), and biogenic spirals (𝑛 = 100) with
characteristic distributions of pitch, radius, Si/Fe ratio, and regular-
ity. Fisher LDA provides discriminant projection and classification
accuracy.

3 RESULTS
3.1 DLA
DLA produces fractal aggregates with fractal dimension 1.455 and
helicity 0.026, confirming that diffusion-limited growth generates
branching rather than helical structures. The mean radius is 3.973
with aspect ratio 3.084.

3.2 Reaction-Diffusion
The reaction-diffusionmodel generates planar spiral patterns (has_spiral
= true) with dominant wavelength evolving from 13.067 to 28.0
over 2000 steps. However, these are 2D patterns, not 3D helices
(is_3d_helix = false).

3.3 Fibrous Growth
Fibrous growth produces helical structures in 8 of 100 fibers (8.0%).
Among helical fibers, chirality is racemic: 6 left-handed, 2 right-
handed (right fraction 0.25, binomial 𝑝 = 0.289), consistent with an
abiotic mechanism lacking chiral bias. Mean helix quality is 0.155
with mean pitch 0.026 and mean radius 0.010.

3.4 Mechanism Comparison
Reaction-diffusion ranks first (0.400), followed closely by fibrous
growth (0.389) and DLA (0.280). Nomechanism achieves high scores
across all criteria.
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Table 1: Mechanism comparison scores across five criteria
(0–1 scale).

Criterion DLA R-D Fibrous

3D helix production 0.000 0.000 0.094
Correct pitch range 0.000 0.300 0.050
Correct radius range 0.200 0.300 0.000
Racemic chirality 0.500 0.800 0.900
Composition match 0.700 0.600 0.900

Total score 0.280 0.400 0.389

Table 2: Morphometric summary for three structure types.

Feature Agate Biomorph Biogenic

Mean pitch (𝜇m) 4.193 5.787 8.347
Mean radius (𝜇m) 1.632 3.617 2.212
Mean Si/Fe ratio 65.165 15.736 7.447
Mean regularity 0.718 0.447 0.846

3.5 Morphometric Discrimination
Fisher LDA achieves 83.0% classification accuracy. The strongest
discriminant features are Si/Fe ratio (weight −0.606) and regular-
ity (0.693), followed by pitch (0.335) and radius (−0.202). Pairwise
separability: agate vs. biogenic = 3.296, agate vs. biomorph = 2.318,
biomorph vs. biogenic = 1.364.

Figure 1:Mechanism comparison scores across five diagnostic
criteria.

4 CONCLUSION
Our computational analysis reveals that no single candidate mecha-
nism fully reproduces all observed features of agate helices. Reaction-
diffusion achieves the highest overall score (0.400) but cannot gen-
erate 3D helices. Fibrous growth is the only mechanism producing
true 3D helical structures (8.0% of fibers) with racemic chirality
consistent with abiotic origin. DLA fails to generate helical morphol-
ogy (helicity 0.026). Morphometric analysis achieves 83.0% accuracy
in distinguishing agate helices from biomorphs and biogenic spi-
rals, with Si/Fe ratio and regularity as the strongest discriminators.

Figure 2: Morphometric discriminant projection of agate
helices, biomorphs, and biogenic spirals.

These results suggest that the true formation mechanism likely
involves elements of both fibrous growth (3D helix generation) and
reaction-diffusion (pattern wavelength control), potentially in a
coupled process.

4.1 Limitations
The models use simplified representations of real silica crystalliza-
tion. The fibrous growth model’s low helical fraction (8.0%) may
reflect parameter choices rather than fundamental limitations. The
morphometric discrimination relies on synthetic datasets rather
than natural specimens. Future work should explore coupled mech-
anisms and validate against measured agate helix geometries.
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