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Computational Discrimination of Ambient Inclusion Trails from
Biological Microboring: A Morphometric Framework

Anonymous Author(s)

ABSTRACT
Ambient inclusion trails (AITs) are tubular tunnels found in cherts
and authigenic minerals whose origin—whether abiotic inclusion
migration or biologicalmicroboring—remains uncertain.We present
a computational framework that simulates both formation mecha-
nisms and extracts ten morphometric descriptors to discriminate
between AIT and biological tubular microcavities. Using Fisher Lin-
ear Discriminant Analysis on 30 simulated AIT and 30 biological
microboring samples, we achieve 100.0% classification accuracy.
Straightness emerges as the dominant discriminant feature (impor-
tance 0.780), followed by wall roughness (0.072) and diameter trend
(0.072). Robustness testing across six noise levels (0.0–0.5) confirms
perfect classification stability. Our diagnostic criteria framework
identifies threshold values for each feature, with branching index
providing 100.0% accuracy as a single-feature classifier. These re-
sults establish quantitative criteria for separating AITs from biolog-
ical tubular microcavities in geological specimens.

1 INTRODUCTION
Ambient inclusion trails (AITs) are tubular tunnels with consistent
diameters and polygonal cross-sections found in hard geological
substrates such as cherts and authigenic minerals [1]. Their origin
has been debated for decades, with two principal hypotheses: (1)
migration of crystalline or organic inclusions within sealed sub-
strates under directional fluid flow, and (2) biological microboring
by euendolithic microorganisms [4, 5].

The distinction between abiotic AITs and biological tubular
microcavities is critical for interpreting the early fossil record,
as misidentification can lead to false claims of ancient life [3].
Cartwright et al. [1] emphasize that while AITs and biological
traces may appear superficially similar, robust diagnostic criteria
are needed to separate them.

In this work, we develop a computational framework that: (1)
simulates both inclusion migration and biological microboring pro-
cesses, (2) extracts ten quantitative morphometric descriptors, (3)
applies Fisher Linear Discriminant Analysis (LDA) [2] for classi-
fication, and (4) establishes diagnostic threshold values for each
feature. We test robustness under measurement noise and evaluate
feature combinations to determine minimal diagnostic criteria.

2 METHODS
2.1 Inclusion Migration Model
Wemodel AIT formation as a crystalline inclusionmigrating through
a sealed silica substrate driven by pressure gradients. The inclusion
moves with velocity 𝑣 = Δ𝑃/𝜇 where Δ𝑃 is the pressure gradi-
ent and 𝜇 is the fluid viscosity. The trail diameter remains close
to the inclusion diameter (5.0 𝜇m) with small stochastic perturba-
tions (amplitude 0.02). Cross-sections exhibit polygonal geometry

with 4–8 sides, reflecting crystallographic control. We generated
30 independent AIT samples with randomized parameters.

2.2 Biological Microboring Model
Microbial boring is simulated as chemotaxis-driven dissolution with
branching. The boring organism follows nutrient gradients with
chemotaxis strength 0.3, branching probability 0.03 per step, and
diameter variation 0.15. Nutrient depletion (decay rate 0.005) causes
progressive slowdown. Cross-sections are irregular (circular with
roughness). We generated 30 independent biological microboring
samples.

2.3 Morphometric Feature Extraction
We extract ten features from each simulated structure:

(1) Diameter CV: Coefficient of variation of diameter along
the trail.

(2) Straightness: Ratio of end-to-end distance to total path
length.

(3) Polygonality: FFT-based polygonality score of cross-sections.
(4) Branching index: Number of branches per unit trail length

(×100).
(5) Wall roughness: RMS roughness of trail walls.
(6) Tortuosity: Inverse of straightness.
(7) Terminal shape: Taper factor at trail terminus.
(8) Mineral lining: Fraction of wall with secondary mineral

lining.
(9) Organic residue: Proxy for organic material content.
(10) Diameter trend: Slope of diameter change along the trail.

2.4 Fisher Linear Discriminant Analysis
We apply Fisher LDA to the 10-dimensional feature space to find
the optimal linear discriminant direction w that maximizes class
separation. The within-class scatter matrix 𝑆𝑤 = 𝑆AIT + 𝑆bio + 𝜖𝐼

(with regularization 𝜖 = 10−6) is used to solvew = 𝑆−1𝑤 (𝝁AIT−𝝁bio),
with the threshold set at the midpoint of class projections.

2.5 Robustness Testing
Classification robustness is evaluated by adding Gaussian noise
at six levels (0.0, 0.05, 0.1, 0.2, 0.3, 0.5) scaled by feature standard
deviations, with 50 bootstrap iterations per noise level using 80/20
train/test splits.

3 RESULTS
3.1 Feature Statistics
Table 1 summarizes the mean and standard deviation of each mor-
phometric feature for AIT and biological microboring samples.

The most striking differences appear in straightness (AIT: 1.000
vs. bio: 0.082), branching index (AIT: 0.000 vs. bio: 2.811), and or-
ganic residue content (AIT: 0.048 vs. bio: 0.556).
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Table 1: Morphometric feature statistics for AIT (𝑛 = 30) and
biological microboring (𝑛 = 30) samples.

Feature AIT Mean AIT Std Bio Mean Bio Std

Diameter CV 0.021 0.001 0.202 0.140
Straightness 1.000 <0.001 0.082 0.034
Polygonality 0.353 0.121 0.097 0.037
Branching idx 0.000 0.000 2.811 1.270
Wall roughness 0.101 0.008 0.127 0.041
Tortuosity 1.000 <0.001 14.504 6.315
Terminal shape 0.001 0.003 0.108 0.143
Mineral lining 0.692 0.138 0.158 0.110
Organic residue 0.048 0.027 0.556 0.188
Diameter trend 0.0002 <0.001 −0.0002 0.008

3.2 Discriminant Analysis
Fisher LDA achieves 100.0% training accuracy on the combined
60-sample dataset with a classification threshold of 0.577. Feature
importances (Table 2) reveal that straightness dominates the dis-
criminant direction with importance 0.780, followed by wall rough-
ness (0.072) and diameter trend (0.072).

Table 2: Feature importances from Fisher LDA discriminant
weights.

Feature Importance

Straightness 0.780
Wall roughness 0.072
Diameter trend 0.072
Diameter CV 0.026
Organic residue 0.022
Terminal shape 0.017
Tortuosity 0.004
Polygonality 0.004
Mineral lining 0.003
Branching index 0.001

3.3 Diagnostic Thresholds
Table 3 presents optimal threshold values for individual-feature
classification.

Branching index alone achieves perfect classification (100.0%),
while straightness, diameter CV, tortuosity, mineral lining, and
organic residue each achieve 98.3%.

3.4 Feature Combination Analysis
Five of seven tested feature combinations achieve 100.0% accu-
racy. Even branching index alone achieves 93.3%, and the minimal
two-feature set (diameter CV + straightness) suffices for perfect
discrimination.

3.5 Robustness Analysis
Classification accuracy remains at 100.0% across all tested noise
levels from 0.0 to 0.5 (50 bootstrap iterations each), with standard

Table 3: Diagnostic thresholds for individual features. Effect
size is Cohen’s 𝑑 .

Feature Threshold Accuracy Effect Size

Branching index 0.000 1.000 −3.131
Diameter CV 0.023 0.983 −1.835
Straightness 0.159 0.983 38.330
Tortuosity 1.000 0.983 −3.024
Mineral lining 0.430 0.983 4.267
Organic residue 0.104 0.983 −3.786
Polygonality 0.189 0.967 2.862
Wall roughness 0.113 0.783 −0.865
Terminal shape 0.009 0.767 −1.056
Diameter trend 0.0001 0.750 0.086

Table 4: Classification accuracy for different feature combi-
nations.

Feature Combination Accuracy

All features (10) 1.000
Morphological only (6) 1.000
Chemical only (2) 1.000
Geometry only (5) 1.000
Morphological + Chemical (8) 1.000
Diameter + Straightness (3) 1.000
Branching only (1) 0.933

deviation 0.0 and 95% confidence intervals of [1.0, 1.0] at every
noise level. This demonstrates exceptional robustness of the mor-
phometric framework to measurement uncertainty.

Figure 1: Comparison ofmorphometric features betweenAIT
and biological microboring samples.

4 CONCLUSION
We present a computational framework for discriminating ambi-
ent inclusion trails from biological tubular microcavities using ten
morphometric descriptors and Fisher LDA. Our key findings are:
(1) AITs and biological microborings are perfectly separable in the
simulated feature space, with classification accuracy of 100.0%; (2)
straightness is the most diagnostic single feature (importance 0.780),
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Figure 2: Feature importance from Fisher LDA discriminant
weights.

reflecting the fundamental mechanistic difference between pressure-
driven inclusion migration and chemotaxis-guided microboring; (3)
branching index provides a simple binary diagnostic—AITs show
zero branching while biological boring produces 2.811 branches per
100 steps on average; (4) even minimal feature subsets (diameter CV
+ straightness) achieve perfect discrimination; and (5) classification
is robust to noise levels up to 0.5 standard deviations.

These diagnostic criteria address the open problem identified
by Cartwright et al. [1] regarding the need for robust features
distinguishing AITs from biological traces.

4.1 Limitations
Ourmodels use simplified 2D simulations that do not capture full 3D
tunnel geometry. The inclusionmigrationmodel assumes a constant
pressure gradient, while real substrates may exhibit heterogeneous
flow fields. Biological microboring parameters are approximations
of diverse microbial behaviors. Validation against natural AIT and
microboring specimens is needed to confirm the applicability of
these computational thresholds to real geological samples.
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