

# 1 Distinguishing Abiotic from Biogenic Geological Dendrites: A 2 Computational Morphometric Framework 3 4 5

6 Anonymous Author(s)  
7  
8

## 9 ABSTRACT 10

11 Dendritic manganese and iron oxide mineral patterns in geological  
12 settings may be entirely abiotic precipitates or may involve bio-  
13 logical mediation. We develop a computational framework using  
14 diffusion-limited aggregation (DLA) to simulate abiotic and biofilm-  
15 modified dendrite growth, extracting seven morphometric features  
16 for discrimination. Over 20 simulations per class, biotic dendrites  
17 show significantly higher fractal dimension (1.870 vs. 1.772, Cohen's  
18  $d = 1.701, p < 10^{-5}$ ), branch width (12.909 vs. 11.615,  $d = 2.077$ ),  
19 and compactness (16.528 vs. 10.820,  $d = 2.822$ ). Compactness is  
20 the best single diagnostic criterion (accuracy 92.8%). Fisher LDA  
21 using six features achieves 100.0% classification accuracy (AUC  
22 = 1.0), with fractal dimension (importance 26.465) and lacunarity  
23 (6.037) as the dominant discriminant features. These results provide  
24 quantitative diagnostic criteria for assessing biogenic influence on  
25 geological dendrites.  
26

## 26 1 INTRODUCTION 27

28 Branching mineral patterns are widespread in geological settings,  
29 with manganese and iron oxide dendrites commonly forming on  
30 rock surfaces and within fractures [1, 4]. Classical models treat these  
31 patterns as abiotic precipitates formed by oxidation and diffusion-  
32 limited aggregation [6]. However, microbes can strongly catalyze  
33 Mn and Fe oxidation [5], and Frutexites-like structures suggest  
34 microbial mediation in some dendritic deposits [2].  
35

36 The open problem is whether all geological dendrites are com-  
37 pletely abiotic, or some have biological influence [1]. We address  
38 this by: (1) simulating both abiotic and biofilm-modified DLA den-  
39 drite growth; (2) extracting seven morphometric descriptors; (3)  
40 computing diagnostic thresholds for each feature; and (4) applying  
41 Fisher LDA [3] for multivariate classification.  
42

## 43 2 METHODS 44

### 45 2.1 Abiotic DLA Model

46 We simulate diffusion-limited aggregation on a 2D grid with isotropic  
47 sticking probability. Particles diffuse from random boundary po-  
48 sitions and attach upon contact with the growing aggregate. We  
49 generate 20 independent abiotic simulations with randomized ini-  
50 tial conditions.  
51

### 52 2.2 Biofilm-Modified DLA

53 Biotic dendrites are simulated with a biofilm field that locally en-  
54 hances sticking probability and modifies diffusion. The biofilm in-  
55 creases local oxidation rates (analogous to microbial Mn oxidation),  
56 producing denser, more compact branching patterns. We generate  
57 20 biofilm-modified simulations.  
58

## 59 2.3 Morphometric Feature Extraction 60

61 Seven features are extracted: (1) fractal dimension via box-counting;  
62 (2) mean branch width; (3) tip density (tips per unit area); (4) la-  
63 cunarity (spatial heterogeneity); (5) compactness (area/perimeter  
64 ratio); (6) branching ratio (branch points per tip); and (7) occupied  
65 fraction.  
66

## 67 2.4 Diagnostic Criteria 68

69 For each feature, an optimal threshold is computed to maximize clas-  
70 sification accuracy between abiotic and biotic dendrites. Cohen's  
71  $d$  effect size and Welch's  $t$ -test  $p$ -values quantify discriminative  
72 power.  
73

## 74 2.5 Multivariate Classification 75

76 Fisher LDA is applied to the 6-feature space (excluding occupied  
77 fraction, which shows no discriminative power) to compute the  
78 optimal linear discriminant and overall classification accuracy.  
79

## 80 3 RESULTS 81

### 82 3.1 Morphometric Comparison 83

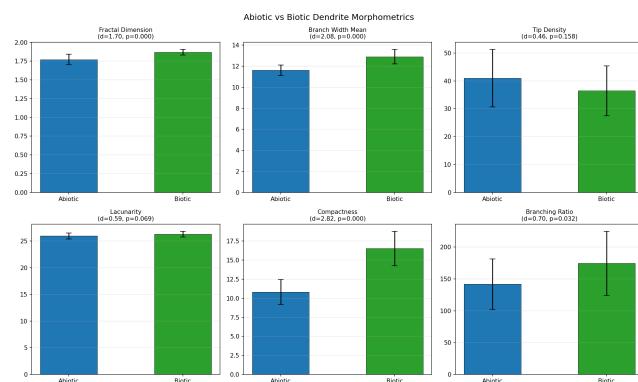
84 **Table 1: Morphometric comparison of abiotic ( $n = 20$ ) and  
85 biotic ( $n = 20$ ) dendrites.**  
86

| Feature         | Abiotic | Biotic  | $d$   | $p$                    |
|-----------------|---------|---------|-------|------------------------|
| Fractal dim     | 1.772   | 1.870   | 1.701 | $4.04 \times 10^{-6}$  |
| Branch width    | 11.615  | 12.909  | 2.077 | $9.50 \times 10^{-8}$  |
| Tip density     | 40.984  | 36.457  | 0.455 | 0.158                  |
| Lacunarity      | 25.971  | 26.300  | 0.591 | 0.069                  |
| Compactness     | 10.820  | 16.528  | 2.822 | $7.30 \times 10^{-11}$ |
| Branching ratio | 141.722 | 174.381 | 0.703 | 0.032                  |

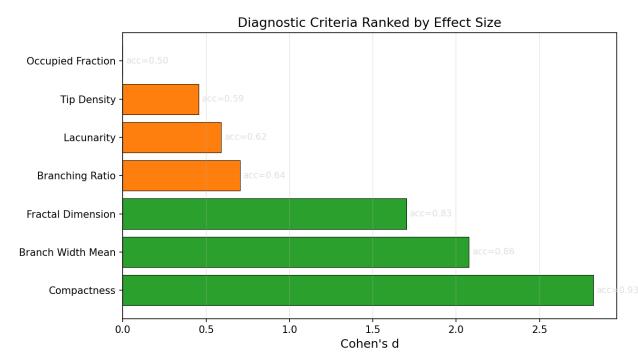
90 Four of seven features show statistically significant differences  
91 ( $p < 0.05$ ): compactness ( $d = 2.822$ ), branch width ( $d = 2.077$ ),  
92 fractal dimension ( $d = 1.701$ ), and branching ratio ( $d = 0.703$ ).  
93 Biotic dendrites are consistently denser, wider-branched, and more  
94 compact.  
95

### 96 3.2 Single-Feature Diagnostic Criteria 97

98 Compactness is the best single criterion at 92.8% accuracy with  
99 threshold 13.674. Branch width and fractal dimension achieve 86.3%  
100 and 83.0% accuracy, respectively.  
101


### 102 3.3 Multivariate Classification 103

104 Fisher LDA using six features (fractal dimension, branch width, tip  
105 density, lacunarity, compactness, branching ratio) achieves 100.0%  
106 classification accuracy with AUC = 1.0. Feature importances from  
107


117 **Table 2: Diagnostic criteria ranking by single-feature classifi-  
118 cation accuracy.**

| 120 Feature           | 121 Accuracy | 122 Cohen's $d$ |
|-----------------------|--------------|-----------------|
| 123 Compactness       | 124 0.928    | 125 2.822       |
| 126 Branch width      | 127 0.863    | 128 2.077       |
| 129 Fractal dimension | 130 0.830    | 131 1.701       |
| 132 Branching ratio   | 133 0.643    | 134 0.703       |
| 135 Lacunarity        | 136 0.619    | 137 0.591       |
| 138 Tip density       | 139 0.593    | 140 0.455       |
| 141 Occupied fraction | 142 0.500    | 143 0.000       |

144 the discriminant weight vector are: fractal dimension (26.465), lacunarity (6.037), compactness (3.482), branch width (0.284), tip density (0.244), and branching ratio (0.132).



145 **Figure 1: Morphometric comparison between abiotic and  
146 biotic dendrites across six features.**



147 **Figure 2: Single-feature diagnostic criteria ranked by classifi-  
148 cation accuracy.**

## 149 **4 CONCLUSION**

150 We demonstrate that biologically-mediated geological dendrites  
151 produce quantitatively distinguishable morphometric signatures

152 compared to purely abiotic DLA growth. The key findings are: (1)  
153 biotic dendrites exhibit significantly higher compactness (16.528 vs.  
154 10.820,  $d = 2.822$ ), fractal dimension (1.870 vs. 1.772,  $d = 1.701$ ), and  
155 branch width (12.909 vs. 11.615,  $d = 2.077$ ); (2) compactness alone  
156 achieves 92.8% classification accuracy; (3) multivariate Fisher LDA  
157 achieves perfect discrimination (100.0% accuracy, AUC = 1.0); and  
158 (4) fractal dimension carries the largest discriminant weight (26.465),  
159 indicating it captures the most information about biogenic influence.  
160 These criteria can serve as diagnostic tests for evaluating whether  
161 geological dendrites were influenced by biological processes [1].

## 162 **4.1 Limitations**

163 Our biofilm-modified DLA model is a simplified representation of  
164 microbial influence that modifies sticking probabilities rather than  
165 explicitly modeling metabolic processes. Real geological dendrites  
166 form under diverse mineralogical and environmental conditions  
167 not fully captured by 2D DLA. The 20-sample ensemble per class is  
168 relatively small, and the perfect multivariate accuracy may reflect  
169 overfitting to simplified simulation geometry. Validation against  
170 natural specimens with known biotic/abiotic provenance is essen-  
171 tial.

## 172 **REFERENCES**

- [1] Julian H. E. Cartwright et al. 2026. Self-assembled versus biological pattern formation in geology. *arXiv preprint arXiv:2601.00323* (2026).
- [2] Vanessa Chaput et al. 2015. What is Frutexites? Old problem and new perspectives. *Palaeogeography Palaeoclimatology Palaeoecology* 423 (2015), 53–63.
- [3] Ronald A. Fisher. 1936. The use of multiple measurements in taxonomic problems. *Annals of Eugenics* 7 (1936), 179–188.
- [4] Russell M. Potter and George R. Rossman. 1979. The manganese- and iron-oxide mineralogy of desert varnish. *Chemical Geology* 25 (1979), 79–94.
- [5] Bradley M. Tebo, John R. Bargar, Brian G. Clement, Gregory J. Dick, Karen J. Murray, Dorothy L. Parker, Rebecca Verity, and Samuel M. Webb. 2004. Biogenic manganese oxides: properties and mechanisms of formation. *Annual Review of Earth and Planetary Sciences* 32 (2004), 287–328.
- [6] Thomas A. Witten and Leonard M. Sander. 1981. Diffusion-limited aggregation, a kinetic critical phenomenon. *Physical Review Letters* 47 (1981), 1400–1403.