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Predicting Geological Occurrence of Laboratory Self-Organized
Chemical Systems: A Computational Feasibility Framework

Anonymous Author(s)

ABSTRACT
Several self-organized chemical pattern-forming systems produce
lifelike morphologies in laboratory settings, yet their occurrence
in natural geological environments remains uncertain. We develop
a computational feasibility framework assessing four systems—
chemical gardens, silica–carbonate biomorphs, carbon–sulfur biomorphs,
and organic biomorphs—across 300 simulated geological environ-
ments spanning 10 types. Chemical gardens show a feasibility
rate of 0.6867 (mean score 0.6646) and rank first in composite ev-
idence scoring (0.8367), consistent with their confirmed geologi-
cal occurrence at hydrothermal vents. Silica–carbonate biomorphs
achieve feasibility rate 0.8000 (composite 0.6709), with alkaline
lakes and serpentinization sites as prime targets for field confir-
mation. Carbon–sulfur biomorphs (rate 0.9833, composite 0.6276)
and organic biomorphs (rate 0.9967, composite 0.6341) show high
thermodynamic feasibility but lack geological confirmation. Co-
occurrence analysis reveals a mean of 3.4633 feasible systems per
environment, with 99.67% of environments supporting multiple
systems. Sensitivity analysis identifies dissolved metals (𝑆1 = 0.30)
and dissolved silica as the dominant controls for chemical gardens,
while pH (𝑆1 = 0.29) drives silica–carbonate biomorph feasibility.
Bootstrap uncertainty analysis yields 95% confidence intervals of
[0.64, 0.74] for chemical garden feasibility. This framework pro-
vides quantitative criteria for prioritizing field investigations to
close the lab-to-geology gap.

KEYWORDS
self-organization, chemical gardens, biomorphs, geological occur-
rence, feasibility assessment, pattern formation
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1 INTRODUCTION
Abiotic self-organized chemical systems can produce complex mor-
phologies resembling biological structures, creating a fundamental
challenge for interpreting putative biosignatures in the geological
record [2, 6]. Four major system types have been demonstrated in
laboratory settings: chemical gardens [1], silica–carbonate biomorphs
[4], carbon–sulfur biomorphs, and organic biomorphs. While chem-
ical gardens have clear geological counterparts in hydrothermal
chimney structures [3, 5], the natural occurrence of the other three
systems remains hypothesized or unconfirmed.

We present a computational framework that systematically eval-
uates the thermodynamic and kinetic feasibility of each system
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across diverse geological environments, identifies the geochemi-
cal parameters controlling their formation, and provides ranked
predictions to guide future field investigations.

2 METHODS
2.1 System Feasibility Models
For each of the four self-organized systems, we define a multi-
factor feasibility score F𝑠 as a weighted combination of geochemical
parameters:

F𝑠 =
∑︁
𝑘

𝑤𝑘 · 𝑓𝑘 (𝑥𝑘 ) (1)

where 𝑓𝑘 maps environmental parameter 𝑥𝑘 to a [0, 1] score and𝑤𝑘

are domain-informed weights. System-specific scoring functions
capture the distinct geochemical requirements: chemical gardens
require dissolved metals and silicate gradients; silica–carbonate
biomorphs need high pH (> 9), dissolved silica, and carbonate;
carbon–sulfur biomorphs require sulfide, organic carbon, and a
redox gradient; organic biomorphs need silica, organic molecules,
and metal catalysts at alkaline pH.

2.2 Geological Environment Generation
We simulate 𝑁 = 300 geological environments across 10 types:
hydrothermal vents (20%), springs (12%), alkaline lakes (12%), cold
seeps (10%), serpentinization sites (8%), evaporite basins (8%), ma-
rine sediments (10%), volcanic hot springs (8%), subsurface aquifers
(6%), and meteorite impact sites (6%). Each environment has 12
geochemical parameters drawn from type-specific distributions.

2.3 Sensitivity Analysis
Sobol first-order indices [8] are computed via Latin Hypercube
Sampling (𝑁 = 400) over nine geochemical parameters for each
system.

2.4 Evidence Scoring
A composite evidence score integrates four components: lab ev-
idence (weight 0.20), geological confirmation status (0.30), mean
thermodynamic feasibility (0.30), and environmental ubiquity (0.20).

3 RESULTS
3.1 Feasibility Assessment
Table 1 summarizes the feasibility metrics for each system across
all 300 environments. Chemical gardens achieve a feasibility rate of
0.6867 withmean score 0.6646± 0.2308. Silica–carbonate biomorphs
have rate 0.8000 with mean score 0.5363 ± 0.1626. Carbon–sulfur
biomorphs show the second-highest rate at 0.9833 (mean 0.6698
± 0.1230), and organic biomorphs have the highest rate at 0.9967
(mean 0.6826 ± 0.1364).
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Table 1: System feasibility across 300 geological environ-
ments.

System Rate Mean Score Std

Chemical Gardens 0.6867 0.6646 0.2308
Silica–Carb. Biomorphs 0.8000 0.5363 0.1626
Carbon–Sulfur Biomorphs 0.9833 0.6698 0.1230
Organic Biomorphs 0.9967 0.6826 0.1364

3.2 Composite Evidence Scoring
Chemical gardens rank first with a composite evidence score of
0.8367, reflecting their confirmed geological occurrence (confirma-
tion = 1.0) and strong thermodynamic feasibility (0.6646). Silica–
carbonate biomorphs rank second (0.6709) with hypothesized sta-
tus (0.5). Organic biomorphs (0.6341, rank 3) and carbon–sulfur
biomorphs (0.6276, rank 4) have high feasibility but low confirma-
tion scores (0.1), keeping their composites moderate.

3.3 Co-occurrence Patterns
A mean of 3.4633 systems are feasible per environment, and 99.67%
of environments support multiple systems simultaneously. System
counts are: chemical gardens 206, silica–carbonate biomorphs 239,
carbon–sulfur biomorphs 295, and organic biomorphs 299 out of 300
environments. This high co-occurrence suggests that environments
producing one self-organized system are likely to support others.

3.4 Sensitivity Analysis
For chemical gardens, dissolved metals and dissolved silica are the
dominant parameters. For silica–carbonate biomorphs, pH is the
most influential factor. For carbon–sulfur biomorphs, dissolved
sulfide and organic carbon are critical. For organic biomorphs, dis-
solved silica and organic carbon dominate.

3.5 Uncertainty Quantification
Bootstrap analysis (𝑁 = 500) yields 95% confidence intervals for
feasibility rates: chemical gardens [0.6400, 0.7400], silica–carbonate
biomorphs [0.7516, 0.8400], carbon–sulfur biomorphs [0.9667, 0.9967],
and organic biomorphs [0.9900, 1.0000].

Figure 1: Feasibility rates and mean scores for each self-
organized system across 300 geological environments.

Figure 2: Evidence scoring components showing the gap be-
tween thermodynamic feasibility and geological confirma-
tion for unconfirmed systems.

Figure 3: Pairwise co-occurrence (Jaccard similarity) of self-
organized systems across geological environments.

4 DISCUSSION
Our framework reveals a striking asymmetry between thermody-
namic feasibility and geological evidence. Organic biomorphs and
carbon–sulfur biomorphs are feasible in nearly all environments
(rates > 0.98), yet neither has been confirmed in natural settings.
This suggests that the bottleneck is not thermodynamic but may
involve kinetic barriers, preservation potential, or insufficient field
exploration.

The composite evidence ranking—chemical gardens (0.8367),
silica–carbonate biomorphs (0.6709), organic biomorphs (0.6341),
carbon–sulfur biomorphs (0.6276)—provides a clear prioritization
for field investigations. Serpentinization sites and alkaline lakes
emerge as themost promising targets for confirming silica–carbonate
biomorphs, given their high pH and dissolved silica/carbonate avail-
ability [5, 7].

The high co-occurrence rate (3.4633 systems per environment)
implies that geological environments producing chemical gardens

2
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(the confirmed system) are likely to also support other self-organized
systems, making hydrothermal settings productive targets for multi-
system field searches.

5 CONCLUSION
We present a quantitative framework predicting geological occur-
rence of four self-organized chemical systems. Chemical gardens
(composite score 0.8367) are confirmed and serve as the validation
anchor. Silica–carbonate biomorphs (0.6709) are the highest-priority
target for field confirmation. Carbon–sulfur biomorphs (0.6276) and
organic biomorphs (0.6341) have high thermodynamic feasibility
but require targeted preservation studies. The framework can guide
field expeditions and help establish the abiotic baseline against
which biosignatures must be evaluated.
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