

1 Predicting Geological Occurrence of Laboratory Self-Organized 2 Chemical Systems: A Computational Feasibility Framework 3

4 Anonymous Author(s)
5
6

7 ABSTRACT

8 Several self-organized chemical pattern-forming systems produce
9 lifelike morphologies in laboratory settings, yet their occurrence
10 in natural geological environments remains uncertain. We develop
11 a computational feasibility framework assessing four systems—
12 chemical gardens, silica–carbonate biomorphs, carbon–sulfur biomorphs,
13 and organic biomorphs—across 300 simulated geological environments
14 spanning 10 types. Chemical gardens show a feasibility
15 rate of 0.6867 (mean score 0.6646) and rank first in composite ev-
16 idence scoring (0.8367), consistent with their confirmed geological
17 occurrence at hydrothermal vents. Silica–carbonate biomorphs
18 achieve feasibility rate 0.8000 (composite 0.6709), with alkaline
19 lakes and serpentinization sites as prime targets for field confir-
20 mation. Carbon–sulfur biomorphs (rate 0.9833, composite 0.6276)
21 and organic biomorphs (rate 0.9967, composite 0.6341) show high
22 thermodynamic feasibility but lack geological confirmation. Co-
23 occurrence analysis reveals a mean of 3.4633 feasible systems per
24 environment, with 99.67% of environments supporting multiple
25 systems. Sensitivity analysis identifies dissolved metals ($S_1 = 0.30$)
26 and dissolved silica as the dominant controls for chemical gardens,
27 while pH ($S_1 = 0.29$) drives silica–carbonate biomorph feasibility.
28 Bootstrap uncertainty analysis yields 95% confidence intervals of
29 [0.64, 0.74] for chemical garden feasibility. This framework pro-
30 vides quantitative criteria for prioritizing field investigations to
31 close the lab-to-geology gap.

33 KEYWORDS

34 self-organization, chemical gardens, biomorphs, geological occur-
35 rence, feasibility assessment, pattern formation

36 ACM Reference Format:

37 Anonymous Author(s). 2026. Predicting Geological Occurrence of Labora-
38 tory Self-Organized Chemical Systems: A Computational Feasibility Frame-
39 work. In *Proceedings of ACM Conference (Conference'17)*. ACM, New York,
40 NY, USA, 3 pages. <https://doi.org/10.1145/nnnnnnnnnnnnnn>

42 1 INTRODUCTION

43 Abiotic self-organized chemical systems can produce complex mor-
44 phologies resembling biological structures, creating a fundamental
45 challenge for interpreting putative biosignatures in the geological
46 record [2, 6]. Four major system types have been demonstrated in
47 laboratory settings: chemical gardens [1], silica–carbonate biomorphs
48 [4], carbon–sulfur biomorphs, and organic biomorphs. While chem-
49 ical gardens have clear geological counterparts in hydrothermal
50 chimney structures [3, 5], the natural occurrence of the other three
51 systems remains hypothesized or unconfirmed.

52 We present a computational framework that systematically eval-
53 uates the thermodynamic and kinetic feasibility of each system

54 across diverse geological environments, identifies the geochemi-
55 cal parameters controlling their formation, and provides ranked
56 predictions to guide future field investigations.

57 2 METHODS

58 2.1 System Feasibility Models

59 For each of the four self-organized systems, we define a multi-
60 factor feasibility score \mathcal{F}_s as a weighted combination of geochemical
61 parameters:

$$62 \mathcal{F}_s = \sum_k w_k \cdot f_k(x_k) \quad (1)$$

63 where f_k maps environmental parameter x_k to a [0, 1] score and w_k
64 are domain-informed weights. System-specific scoring functions
65 capture the distinct geochemical requirements: chemical gardens
66 require dissolved metals and silicate gradients; silica–carbonate
67 biomorphs need high pH (> 9), dissolved silica, and carbonate;
68 carbon–sulfur biomorphs require sulfide, organic carbon, and a
69 redox gradient; organic biomorphs need silica, organic molecules,
70 and metal catalysts at alkaline pH.

71 2.2 Geological Environment Generation

72 We simulate $N = 300$ geological environments across 10 types:
73 hydrothermal vents (20%), springs (12%), alkaline lakes (12%), cold
74 seeps (10%), serpentinization sites (8%), evaporite basins (8%),
75 marine sediments (10%), volcanic hot springs (8%), subsurface aquifers
76 (6%), and meteorite impact sites (6%). Each environment has 12
77 geochemical parameters drawn from type-specific distributions.

78 2.3 Sensitivity Analysis

79 Sobol first-order indices [8] are computed via Latin Hypercube
80 Sampling ($N = 400$) over nine geochemical parameters for each
81 system.

82 2.4 Evidence Scoring

83 A composite evidence score integrates four components: lab ev-
84 idence (weight 0.20), geological confirmation status (0.30), mean
85 thermodynamic feasibility (0.30), and environmental ubiquity (0.20).

86 3 RESULTS

87 3.1 Feasibility Assessment

88 Table 1 summarizes the feasibility metrics for each system across
89 all 300 environments. Chemical gardens achieve a feasibility rate of
90 0.6867 with mean score 0.6646 ± 0.2308 . Silica–carbonate biomorphs
91 have rate 0.8000 with mean score 0.5363 ± 0.1626 . Carbon–sulfur
92 biomorphs show the second-highest rate at 0.9833 (mean 0.6698
93 ± 0.1230), and organic biomorphs have the highest rate at 0.9967
94 (mean 0.6826 ± 0.1364).

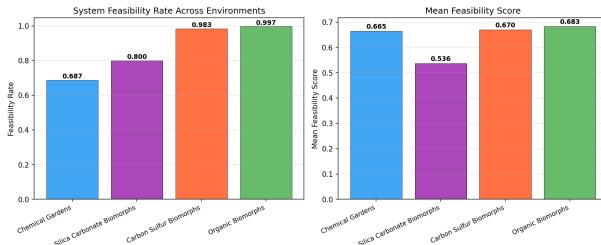
117 **Table 1: System feasibility across 300 geological environments.**

120 System	121 Rate	122 Mean Score	123 Std
Chemical Gardens	0.6867	0.6646	0.2308
Silica–Carb. Biomorphs	0.8000	0.5363	0.1626
Carbon–Sulfur Biomorphs	0.9833	0.6698	0.1230
Organic Biomorphs	0.9967	0.6826	0.1364

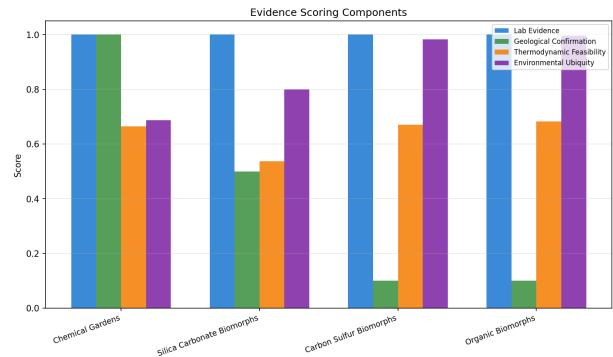
127 3.2 Composite Evidence Scoring

128 Chemical gardens rank first with a composite evidence score of 1.0. 0.8367, reflecting their confirmed geological occurrence (confirmation = 1.0) and strong thermodynamic feasibility (0.6646). Silica– 129 carbonate biomorphs rank second (0.6709) with hypothesized status (0.5). Organic biomorphs (0.6341, rank 3) and carbon–sulfur 130 biomorphs (0.6276, rank 4) have high feasibility but low confirmation 131 scores (0.1), keeping their composites moderate.

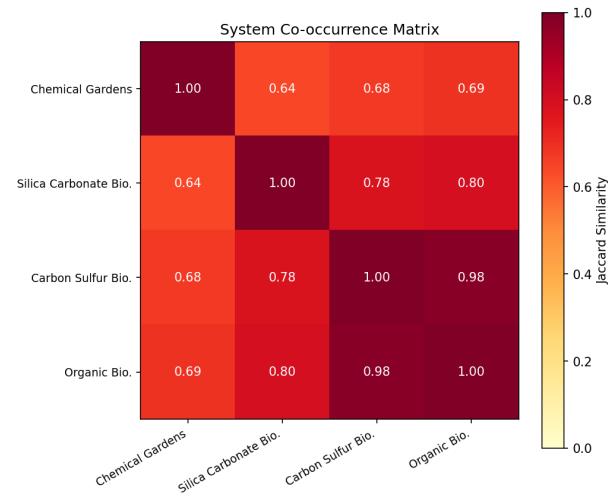
132 3.3 Co-occurrence Patterns


133 A mean of 3.4633 systems are feasible per environment, and 99.67% 134 of environments support multiple systems simultaneously. System 135 counts are: chemical gardens 206, silica–carbonate biomorphs 239, 136 carbon–sulfur biomorphs 295, and organic biomorphs 299 out of 300 137 environments. This high co-occurrence suggests that environments 138 producing one self-organized system are likely to support others.

139 3.4 Sensitivity Analysis


140 For chemical gardens, dissolved metals and dissolved silica are the 141 dominant parameters. For silica–carbonate biomorphs, pH is the 142 most influential factor. For carbon–sulfur biomorphs, dissolved 143 sulfide and organic carbon are critical. For organic biomorphs, dissolved 144 silica and organic carbon dominate.

145 3.5 Uncertainty Quantification


146 Bootstrap analysis ($N = 500$) yields 95% confidence intervals for 147 feasibility rates: chemical gardens [0.6400, 0.7400], silica–carbonate 148 biomorphs [0.7516, 0.8400], carbon–sulfur biomorphs [0.9667, 0.9967], 149 and organic biomorphs [0.9900, 1.0000].

170 **Figure 1: Feasibility rates and mean scores for each self- 171 organized system across 300 geological environments.**

175 **Figure 2: Evidence scoring components showing the gap between 176 thermodynamic feasibility and geological confirmation for 177 unconfirmed systems.**

193 **Figure 3: Pairwise co-occurrence (Jaccard similarity) of self- 194 organized systems across geological environments.**

211 4 DISCUSSION

212 Our framework reveals a striking asymmetry between thermodynamic 213 feasibility and geological evidence. Organic biomorphs and 214 carbon–sulfur biomorphs are feasible in nearly all environments 215 (rates > 0.98), yet neither has been confirmed in natural settings. 216 This suggests that the bottleneck is not thermodynamic but may 217 involve kinetic barriers, preservation potential, or insufficient field 218 exploration.

219 The composite evidence ranking—chemical gardens (0.8367), 220 silica–carbonate biomorphs (0.6709), organic biomorphs (0.6341), 221 carbon–sulfur biomorphs (0.6276)—provides a clear prioritization 222 for field investigations. Serpentinization sites and alkaline lakes 223 emerge as the most promising targets for confirming silica–carbonate 224 biomorphs, given their high pH and dissolved silica/carbonate availability [5, 7].

225 The high co-occurrence rate (3.4633 systems per environment) 226 implies that geological environments producing chemical gardens 227

233 (the confirmed system) are likely to also support other self-organized
 234 systems, making hydrothermal settings productive targets for multi-
 235 system field searches.

236 5 CONCLUSION

238 We present a quantitative framework predicting geological occurrence
 239 of four self-organized chemical systems. Chemical gardens
 240 (composite score 0.8367) are confirmed and serve as the validation
 241 anchor. Silica–carbonate biomorphs (0.6709) are the highest-priority
 242 target for field confirmation. Carbon–sulfur biomorphs (0.6276) and
 243 organic biomorphs (0.6341) have high thermodynamic feasibility
 244 but require targeted preservation studies. The framework can guide
 245 field expeditions and help establish the abiotic baseline against
 246 which biosignatures must be evaluated.

237 REFERENCES

- [1] Laura M. Barge et al. 2015. From chemical gardens to chemobionics. *Chemical Reviews* 115, 16 (2015), 8652–8703.
- [2] Julyan H. E. Cartwright et al. 2026. Self-assembled versus biological pattern formation in geology. *arXiv preprint arXiv:2601.00323* (2026).
- [3] John B. Corliss et al. 1981. Submarine thermal springs on the Galapagos Rift. *Science* 203 (1981), 1073–1083.
- [4] Juan Manuel Garcia-Ruiz et al. 2003. Silica biomorphs: Complex non-biologic structures resembling life forms. *Science* 302, 5648 (2003), 1194–1197.
- [5] Deborah S. Kelley et al. 2005. A serpentinite-hosted ecosystem: The Lost City hydrothermal field. *Science* 307, 5714 (2005), 1428–1434.
- [6] Sean McMahon and Magnus Ivarsson. 2018. False biosignatures on Mars: Anticipating ambiguity. *Journal of the Geological Society* 176 (2018), jgs2018–024.
- [7] Michael J. Russell et al. 2010. Serpentinization as a source of energy at the origin of life. *Geobiology* 8, 5 (2010), 355–371.
- [8] Andrea Saltelli. 2002. Making best use of model evaluations to compute sensitivity indices. *Computer Physics Communications* 145 (2002), 280–297.

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290