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ABSTRACT

The relative contributions of biotic and abiotic processes to rock
varnish formation remain unclear. We develop process-based rate
models for six formation pathways—three abiotic (dust leaching,
photo-oxidation, silica gelation) and three biotic (microbial Mn
oxidation, EPS templating, Fe oxidation)—and evaluate their bal-
ance across seven environmental scenarios. Under fiducial desert
conditions (30°C, 20% RH, 100 mm/yr rainfall), abiotic processes
dominate with a biotic fraction of 4.9%, primarily driven by dust
leaching. However, the biotic fraction increases dramatically with
moisture availability: from 1.3% in hot deserts to 48.4% in coastal
environments. Climate sensitivity analysis reveals rainfall as the
primary control, with the biotic fraction rising from <1% at 20
mm/yr to 30% at 800 mm/yr. The Mn/Fe ratio (~1.6) in our simula-
tions reflects the biotic enhancement of Mn over Fe. These results
support a polygenetic model where the biotic/abiotic balance is
fundamentally climate-dependent.

1 INTRODUCTION

Rock varnish is a thin (~1-500 ym) dark coating rich in Mn and Fe
oxides found on rock surfaces in arid environments worldwide [2].
Despite study dating back to Darwin, the formation mechanism
remains debated, with evidence for both abiotic [5] and biotic [3, 4]
pathways. The balance between these processes likely varies with
environmental conditions [1], but quantitative assessments are

lacking.

2 METHODS
2.1 Rate Models

We model three abiotic processes: (1) dust leaching, releasing Mn/Fe
from aeolian deposits; (2) photo-oxidation of dissolved Mn®* under
UV; (3) silica gelation as a cementing agent. Three biotic processes
are modeled: (1) enzymatic Mn?* oxidation by microorganisms; (2)
extracellular polymeric substance (EPS) templating; (3) microbial
Fe oxidation. Each rate depends on temperature, humidity, and
substrate availability.

2.2 Environmental Scenarios

Seven environments are tested: hot desert, temperate arid, Mediter-
ranean, cold desert, coastal, alpine, and tropical semi-arid, each
with characteristic temperature, humidity, rainfall, UV, and dust
flux.

3 RESULTS

3.1 Process Decomposition

Under fiducial desert conditions, dust leaching dominates at 42.3
ug/cm?/yr, while biotic Mn oxidation contributes 1.83 ug/cm?/yr.
The total biotic fraction is 4.9% (Figure 1).
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Figure 1: Abiotic and biotic process rates under fiducial con-

ditions.

3.2 Environmental Variation

The biotic fraction varies from 0.3% (cold desert) to 48.4% (coastal),
driven by moisture availability and microbial density (Figure 2).

Table 1: Biotic fraction across environments.

Environment Biotic Fraction (%)
Hot Desert 1.3
Cold Desert 0.3
Temperate Arid 8.5
Alpine 1.9
Tropical Semi-Arid 6.5
Mediterranean 24.2
Coastal 48.4
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Figure 2: Biotic vs. abiotic balance across environments.

3.3 Climate Sensitivity

Rainfall is the primary control on the biotic fraction, with tempera-
ture having a secondary effect (Figure 3). The Mn/Fe ratio of ~1.6
reflects biotic enhancement of Mn oxidation over Fe.
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Figure 3: Climate sensitivity of biotic fraction.

4 CONCLUSION

Our results support a polygenetic model of rock varnish formation
where the biotic/abiotic balance is strongly climate-dependent. In
classic hot desert settings, abiotic dust leaching dominates (>95%),
while in wetter environments, biotic contributions can reach nearly
50%. This variability explains conflicting findings in the literature
and suggests that universal biotic or abiotic explanations are inade-
quate.

Anon.

5 LIMITATIONS AND ETHICAL
CONSIDERATIONS

Limitations include simplified rate parameterizations, absence of
substrate mineralogy effects, steady-state assumptions, and diffi-
culty validating model predictions against ancient varnish. This
computational work poses no ethical concerns, but we note that
rock varnish interpretation has cultural significance for dating rock
art, where biased models could affect archaeological conclusions.
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