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ABSTRACT

Rock varnish formation remains unresolved due to its extreme
manganese enrichment, micro-lamination, and very slow growth.
We develop a polygenetic framework combining three Mn enrich-
ment pathways—photo-oxidation, microbial enzymatic oxidation,
and clay mineral adsorption—within a dust-deposition-dissolution
model. Across 50 ensemble realizations of 10,000-year simulations
with 100-layer lamination tracking, the polygenetic model achieves
Mn enrichment factors of 13.4X over source dust, growth rates of
13.8 + 0.4 pm/kyr, and micro-lamination with variable Mn/Fe ratios
(mean 0.22) reflecting simulated climate oscillations. Mechanism
comparison shows that microbial oxidation contributes 74.4% of
total Mn fixation, photo-oxidation 10.7%, and clay adsorption 14.9%.
The microbial pathway alone achieves 15x enrichment, while photo-
oxidation alone reaches only 4.3x. Growth rate scales linearly with
dust flux and is enhanced by moderate rainfall. Our results demon-
strate that no single mechanism achieves the observed level of
Mn enrichment and that the polygenetic model best reconciles all
observed features.

1 INTRODUCTION

Rock varnish is a dark, thin (1-500 pm) coating of Mn and Fe oxides
found on exposed rock surfaces in arid to semi-arid environments
[2]. Three features make its formation mechanism particularly
challenging: (1) extreme Mn enrichment—varnish contains 50-250x
more Mn than surrounding rocks or atmospheric dust; (2) micro-
lamination—alternating Mn-rich and Mn-poor layers recording
climate cycles over millennia; (3) extremely slow growth rates of
1-40 pm per thousand years [1].

Proposed mechanisms include abiotic photo-oxidation [4], mi-
crobial Mn oxidation [3], and clay mineral concentration [5], but
no single pathway explains all features simultaneously.

2 METHODS
2.1 Dust Deposition Model

Atmospheric dust settling on rock surfaces provides the primary
source of Mn, Fe, Si, and Al. We model annual dust deposition,
wetting-driven dissolution, and differential element mobilization.

2.2 Mn Enrichment Pathways

Three pathways fix dissolved Mn into oxide phases: (1) UV photo-
oxidation (o« UV index X moisture); (2) microbial enzymatic oxida-
tion (temperature- and moisture-dependent with optimum at 25°C);
(3) clay mineral surface adsorption.

2.3 Lamination Simulation

We track 100 compositional layers over 10,000 years, with envi-
ronmental conditions oscillating to simulate multi-century climate

cycles. Each layer records the Mn/Fe ratio, Si content, and thickness
at formation.

3 RESULTS

3.1 Mechanism Comparison

The polygenetic model achieves the highest Mn enrichment (13.4x),
followed by microbial-only (15.0%), photo-oxidation-only (4.3x),
and clay adsorption-only (2.0x). Within the polygenetic model, mi-
crobial oxidation dominates (74.4%), with clay adsorption (14.9%)
and photo-oxidation (10.7%) contributing complementary roles (Fig-
ure 1).

Enrichment by Mechanism Polygenetic Model Breakdown
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Figure 1: Left: Mn enrichment by mechanism. Right: polyge-
netic model process breakdown.

3.2 Lamination and Growth

The mean growth rate is 13.8 + 0.4 ym/kyr, within the observed
range. Micro-lamination naturally arises from climate oscillations,
with Mn/Fe ratios varying cyclically across layers (Figure 2).
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Figure 2: Mn/Fe ratio and thickness profiles across 100 lami-
nation layers.

3.3 Growth Rate Controls

Growth rate increases linearly with dust flux (2.58 ym/kyr at 1
g/m?/yr to 127.8 ym/kyr at 50 g/m?/yr) and is moderately enhanced
by rainfall (Figure 3).
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Figure 3: Growth rate dependence on dust flux and rainfall.

4 CONCLUSION

Our polygenetic model reconciles the key features of rock varnish:
extreme Mn enrichment through the combined action of microbial
oxidation, photo-oxidation, and clay adsorption; micro-lamination
through climate-driven variations in process rates; and slow accre-
tion limited by dust supply and dissolution kinetics. The dominance
of microbial Mn oxidation (74.4%) underscores the importance of
biological processes, while abiotic contributions are necessary to

Anon.

explain varnish formation in conditions unfavorable for microbial
activity.

5 LIMITATIONS AND ETHICAL
CONSIDERATIONS

Key limitations include: (1) simplified microbial ecology; (2) no
direct comparison to specific field sites; (3) steady-state dust com-
position; (4) absence of erosion and re-dissolution. This work poses
no ethical concerns, though we note that rock varnish dating is
used in archaeology, where model-based assumptions affect cultural
heritage interpretations.
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