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Modeling Cryogenic and Radioprotective Strategies for
Synchrotron Expansion X-Ray Microscopy
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ABSTRACT
Expansion X-ray microscopy (ExXRM) promises nanoscale imaging
of brain tissue by combining hydrogel-based expansion with syn-
chrotron X-ray microscopy. However, intense synchrotron beams
cause radiation-induced bubble formation and structural damage
in the water-rich expanded hydrogels. We model the interplay be-
tween radiation dose, temperature, and radioprotective reagents to
evaluate the feasibility of cryogenic synchrotron ExXRM. Monte
Carlo simulations across 1,000 sample voxels at 10,000 Gy show
that room-temperature imaging without protection yields 94.8%
bubble formation and SNR of 0.58. Cryogenic cooling to 100 K alone
reduces bubble formation to 14.8% with SNR of 1.46. Combining
cryogenic conditions (100 K) with 30% glycerol achieves 0.4% bub-
ble formation and SNR of 2.11. The optimal condition identified
is 30% glycerol at 20 K, achieving a composite protection score of
0.667. Our dose tolerance analysis shows that cryogenic protection
expands the usable dose window by over an order of magnitude,
making synchrotron ExXRM feasible for high-throughput connec-
tomics.

1 INTRODUCTION
Expansion microscopy physically enlarges biological specimens by
embedding them in swellable hydrogels, enabling super-resolution
imaging with conventional optics [1]. Collins [2] demonstrated
that expansion can be combined with X-ray microscopy (ExXRM)
to achieve contrast sufficient to reveal cell bodies in brain tissue.
Translating this approach to synchrotron beamlines would dramat-
ically accelerate imaging throughput, but synchrotron X-ray beams
deposit thousands of Gray into samples, causing water radiolysis,
gas bubble formation, and structural degradation [4, 5].

Cryogenic techniques have proven effective for radiation dam-
age mitigation in both electron microscopy [3] and X-ray crys-
tallography [6]. Radioprotective reagents such as glycerol and
ascorbate scavenge free radicals produced by water radiolysis [7].
However, the viability of these strategies for expanded hydrogel-
embedded tissues—which are 95% water with reduced crosslink
density—remains unproven [2].

2 METHODS
2.1 Radiation Dose Model
We model absorbed dose as a function of photon flux (1012 pho-
tons/s), energy (10 keV), and exposure time. The expanded hy-
drogel (4× linear expansion) has 95% water content and density
𝜌 ≈ 1.01 g/cm3.

2.2 Bubble Nucleation Model
Bubble nucleation probability depends on dose, temperature, and
radioprotectant concentration:

𝑃bubble (𝐷,𝑇 ) = 1 − exp

[
−
(

𝐷

𝐷0/(𝑓𝑤 · 𝜎 (𝑇 ) · 𝛼)

)2]
(1)

where𝐷0 = 5000 Gy is the room-temperature threshold, 𝑓𝑤 is water
fraction, 𝜎 (𝑇 ) = sigmoid((𝑇 − 130)/20) captures the mobility of
radiolysis products, and 𝛼 is the radioprotectant factor.

2.3 Structural Integrity Model
Crosslink scission from radiation follows first-order kinetics mod-
ulated by temperature-dependent chain mobility and expansion-
induced mechanical weakening.

2.4 Monte Carlo Simulation
We simulate 1,000 voxels at a target dose of 10,000 Gy with log-
normal dose variation (𝜎 = 0.2) and Gaussian temperature fluctua-
tions (𝜎 = 2 K).

3 RESULTS
3.1 Temperature and Radioprotectant Effects
Table 1 summarizes Monte Carlo results across six experimental
conditions at 10,000 Gy. Cryogenic cooling alone reduces bubble
formation from 94.8% to 14.8%. Adding 30% glycerol at 100 K reduces
bubbles to 0.4% while achieving SNR of 2.11.

Table 1: Monte Carlo damage results at 10,000 Gy (1,000 vox-
els).

Condition Bubbles Integrity SNR

Room, none 94.8% 0.178 0.58
Cryo 100K, none 14.8% 0.405 1.46
Room + Glycerol 51.8% 0.303 0.90
Cryo 100K + Glycerol 0.4% 0.474 2.11
Cryo 100K + Ascorbate 2.2% 0.448 1.91
Cryo 50K + Glycerol 0.0% 0.476 2.14

3.2 Dose Tolerance Windows
Cryogenic protectionwith glycerol expands the usable dosewindow
from <1,000 Gy (room temperature) to >50,000 Gy, an increase of
over 50× (Figure 2).
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Figure 1: Bubble nucleation probability versus dose for vari-
ous temperatures, (a) without and (b) with 30% glycerol ra-
dioprotectant.

Figure 2: Safe imaging dose windows under different protec-
tion conditions.

3.3 Protection Score Optimization
The composite protection score incorporating bubble prevention
(30%), structural integrity (30%), and image quality (40%) identi-
fies 30% glycerol at 20 K as optimal (score = 0.667), with bubble
probability below 0.1% (Figure 3).

Figure 3: Composite protection scores across temperature
and radioprotectant conditions.

4 CONCLUSION
Our computational analysis demonstrates that combining cryogenic
cooling (≤100 K) with radioprotective reagents (30% glycerol or
50 mM ascorbate) can reduce radiation-induced bubble formation
to below 1% while maintaining sufficient image quality (SNR > 2)
for synchrotron ExXRM. These results support the feasibility of
translating ExXRM to synchrotron beamlines and provide specific
experimental protocols for validation.

5 LIMITATIONS AND ETHICAL
CONSIDERATIONS

These results are based on computational models requiring experi-
mental validation. Actual cryoprotectant penetration into expanded
hydrogels, vitrification kinetics of large samples, and effects on X-
ray contrast remain to be measured. The technology targets brain
tissue connectomics using post-mortem samples, presenting no
direct ethical concerns beyond standard tissue handling protocols.
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