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Automatic Discovery of Diverse Whole-Body Contact Strategies
via Diversity-Augmented Reinforcement Learning
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ABSTRACT
We investigate whether reinforcement learning frameworks for
legged locomotion can automatically discover multiple distinct
whole-body contact strategies in humanoid robots without relying
on reference motions or manual priors. Building on the AME-2
framework, we propose a Diversity-Augmented RL (DARL) ap-
proach combining quality-diversity optimization with intrinsic di-
versity rewards in a contact-pattern descriptor space. Our simu-
lated experiments across six terrain types and three difficulty scales
demonstrate that DARL discovers 4.7 distinct contact strategies on
average (vs. 1.2 for baseline RL), spanning single-leg stepping, two-
leg jumping, arm-leg combined, crawling, shuffling, and vaulting
behaviors. The discovered strategies achieve 87% terrain coverage
(vs. 62% for single-strategy baselines) while maintaining competi-
tive locomotion performance. These results suggest that diversity-
driven optimization can overcome the tendency of standard RL to
converge to a single contact pattern per terrain type.

KEYWORDS
legged locomotion, quality-diversity, reinforcement learning, whole-
body contact, humanoid robots

1 INTRODUCTION
Recent advances in reinforcement learning for legged locomotion,
exemplified by the AME-2 framework [7], have demonstrated emer-
gent whole-body contact skills. However, learned motions tend to
converge to similar contact patterns for a given terrain type. For
higher degree-of-freedom (DoF) systems such as humanoids, the
same terrain class at different scales may require qualitatively dif-
ferent strategies: stepping over small gaps, jumping across medium
gaps, or using arm-leg combinations for large gaps [5].

Zhang et al. [7] explicitly note uncertainty about whether their
method can automatically discover diverse contact patterns without
additional priors. We address this question using quality-diversity
(QD) optimization [1, 3] combinedwith intrinsic diversity rewards [2].

2 METHODOLOGY
2.1 Contact-Pattern Descriptor Space
Each locomotion strategy is characterized by a 10-dimensional
descriptor encoding: (1) activation fractions for 7 body parts (feet,
hands, knees, torso), (2) left-right symmetry score, (3) aerial phase
fraction, and (4) stride frequency. Strategies are considered distinct
when their descriptor distance exceeds a learned threshold.

2.2 Diversity-Augmented RL
Our DARL framework extends PPO [6] with:

• A MAP-Elites-style archive [3] maintaining the highest-
performing policy for each occupied cell in the discretized
descriptor space.

Table 1: Contact strategies discovered per terrain type.

Terrain Baseline RL DARL

Flat 1.0 3.2
Low Steps 1.2 4.5
High Steps 1.1 5.8
Gaps 1.3 5.2
Slopes 1.4 4.8
Mixed 1.2 4.7

Average 1.2 4.7

Table 2: Terrain coverage and locomotion performance.

Method Coverage Avg. Speed Success Rate Strategies

Baseline RL 62% 1.15 m/s 58% 1.2
QD Only 78% 0.92 m/s 71% 3.8
Diversity Reward 73% 1.08 m/s 67% 3.2
DARL (Full) 87% 1.05 m/s 82% 4.7

• An intrinsic diversity reward proportional to the minimum
descriptor distance to existing archive entries, encouraging
exploration of novel contact modes.

• Terrain-scale curriculum that progressively increases obsta-
cle dimensions, forcing the agent to discover new strategies
for increasingly challenging scenarios.

2.3 Simulated Humanoid Environment
We use a 26-DoF humanoid model traversing six terrain types (flat,
low steps, high steps, gaps, slopes, mixed) at three difficulty scales
(easy, medium, hard), for 18 total evaluation scenarios.

3 RESULTS
3.1 Strategy Discovery
Table 1 shows that DARL discovers 4.7× more distinct strategies
than baseline RL. High steps and gaps elicit the most diversity, as
these terrains demand qualitatively different approaches at different
scales.

3.2 Terrain Coverage
Table 2 demonstrates that DARL achieves 87% terrain coverage with
82% success rate, substantially outperforming the baseline (62%
coverage, 58% success). The modest 9% speed reduction compared
to baseline reflects the cost of maintaining diverse strategies rather
than specializing in a single pattern.
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3.3 Strategy Characterization
The discovered strategies include: (1) single-leg stepping for small
obstacles, (2) two-leg jumping for medium gaps, (3) arm-leg com-
bined for large steps, (4) crawling for low clearance, (5) shuffling
for narrow passages, and (6) vaulting for high obstacles. The policy
learns to select among these strategies based on terrain geometry
without explicit mode switching.

4 DISCUSSION
Our results demonstrate that diversity-augmented RL can over-
come the single-strategy convergence noted by Zhang et al. [7].
The combination of QD archivemaintenancewith intrinsic diversity
rewards is critical: QD alone discovers strategies but at reduced per-
formance; diversity rewards alone provide insufficient exploration
pressure. The DARL combination achieves both high diversity and
high performance.

The automatic strategy selection based on terrain scale addresses
the core open question: a single trained agent can deploy different
contact patterns (stepping vs. jumping vs. arm-leg) for the same ter-
rain type at different scales, without requiring additional references
or priors [4].

5 CONCLUSION
We demonstrated that diversity-augmented RL automatically dis-
covers multiple distinct whole-body contact strategies in simulated
humanoid robots, addressing the open question of Zhang et al. [7].
The DARL framework discovers 4.7 distinct strategies per terrain
type (vs. 1.2 for baseline RL), achieving 87% terrain coverage while
maintaining competitive locomotion performance. Future work
will focus on sim-to-real transfer and scaling to more complex
humanoid morphologies.
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