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Continual Lifelong Learning in Robotics: A Comparative Study of
Forgetting Mitigation Strategies for Sequential Skill Acquisition

Anonymous Author(s)
ABSTRACT
Continual lifelong learning remains an open challenge in robot-
ics, where agents must sequentially acquire manipulation skills
without catastrophic forgetting of previously learned capabilities.
We present a systematic comparative study of six continual learn-
ing strategies—naive fine-tuning, Elastic Weight Consolidation
(EWC), PackNet, experience replay, progressive neural networks,
and adapter routing—evaluated on a sequential robotic manipula-
tion benchmark comprising five tasks of increasing difficulty: reach,
push, pick-and-place, stack, and insert. Across 10 random seeds,
we measure average accuracy, backward transfer (BWT), forward
transfer (FWT), forgetting, and a composite lifelong learning score
(LLS). Our results show that architectural isolation methods (pro-
gressive networks and adapter routing) achieve the highest average
accuracy (0.9753 ± 0.0057 and 0.9725 ± 0.0065, respectively) with
minimal forgetting (0.0251 ± 0.0080 and 0.0250 ± 0.0048), while
naive fine-tuning suffers severe degradation (0.7531 ± 0.0218 accu-
racy, 0.2980 ± 0.0271 forgetting). Scalability analysis reveals that
regularization-based methods degrade sharply beyond seven tasks,
whereas adapter routing maintains 0.9339 ± 0.0060 accuracy even
at ten tasks. All pairwise differences are statistically significant
(𝑝 < 0.001) except between progressive networks and adapter rout-
ing (𝑝 = 0.347), suggesting these architectural approaches form a
Pareto-optimal frontier for continual robotic learning.
ACM Reference Format:
Anonymous Author(s). 2026. Continual Lifelong Learning in Robotics: A
Comparative Study of Forgetting Mitigation Strategies for Sequential Skill
Acquisition. In Proceedings of ACM Conference (Conference’17). ACM, New
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1 INTRODUCTION
Robotic systems deployed in real-world environments must contin-
uously adapt to new tasks and changing conditions over extended
operational lifetimes. This requirement for continual lifelong learn-
ing—the ability to sequentially acquire new skills while retaining
previously mastered ones—remains a fundamental open challenge
in robotics [4, 9]. The core difficulty is catastrophic forgetting: when
neural network parameters are updated to accommodate a new
task, performance on earlier tasks degrades, often severely [3, 7].

Recent advances in vision-language-action (VLA) models have
demonstrated impressive generalization in robotic manipulation [1],
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yet these foundation models still suffer from catastrophic forget-
ting when sequentially fine-tuned on new tasks [9, 12]. The CLARE
framework proposed by Römer et al. [9] addresses this through au-
tonomous adapter routing and expansion, representing a promising
architectural approach to continual learning.

In this work, we present a systematic evaluation framework
for comparing six continual learning strategies across a sequen-
tial manipulation benchmark. Our contributions are: (1) a repro-
ducible simulation framework that captures the key dynamics of
catastrophic forgetting and inter-task interference in robotic skill
acquisition; (2) a comprehensive comparison of regularization, re-
play, and architectural approaches using five complementary met-
rics; and (3) scalability and resource-sensitivity analyses that reveal
practical trade-offs for long-horizon deployment.

2 RELATEDWORK
Continual learningmethods can be broadly categorized into three
families [2]: regularization-based, replay-based, and architecture-
based approaches. Elastic Weight Consolidation (EWC) [3] penal-
izes changes to parameters deemed important for previous tasks
using a Fisher information approximation. PackNet [6] iteratively
prunes and freezes network subsets, dedicating capacity to each
task. Progressive neural networks [10] add new columns for each
task while freezing old ones, eliminating backward interference at
the cost of growing model size. Experience replay [8] maintains
a buffer of past examples to interleave with new task training.
Progress & Compress [11] combines a knowledge base with active
columns to balance plasticity and stability.

Continual learning for robotics poses additional challenges
due to high-dimensional action spaces, sensor noise, and safety
constraints [4]. The LIBERO benchmark [5] provides standardized
evaluation for lifelong robot learning. CLARE [9] introduces adapter
routing for VLA models, achieving continual skill acquisition with-
out task identifiers—a critical practical advantage for deployment.

3 METHODOLOGY
3.1 Task Stream
We evaluate continual learning on a sequential stream of five
robotic manipulation tasks of increasing difficulty: reach (diffi-
culty 0.20), push (0.35), pick-and-place (0.55), stack (0.75), and
insert (0.90). Each task is characterized by a skill embedding vector
in R64, where adjacent tasks in the sequence share partial structure
through blended embeddings, capturing the intuition that related
manipulation skills build upon shared motor primitives.

3.2 Continual Learning Methods
We compare six methods spanning the three major families:

Naive fine-tuning (baseline): Sequential gradient updates with
no forgetting mitigation. Forgetting factor 1.00.
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Table 1: Summary of continual learning metrics (mean ± std
over 10 seeds). Best results in bold.

Method Avg Acc BWT Forgetting LLS

Naive FT 0.7531 ± 0.0218 −0.2980 ± 0.0271 0.2980 ± 0.0271 0.6511 ± 0.0196
EWC 0.8541 ± 0.0152 −0.1669 ± 0.0185 0.1669 ± 0.0185 0.7438 ± 0.0131
PackNet 0.8818 ± 0.0105 −0.1280 ± 0.0160 0.1290 ± 0.0157 0.7700 ± 0.0095
Exp. Replay 0.9253 ± 0.0070 −0.0773 ± 0.0106 0.0794 ± 0.0101 0.8075 ± 0.0060
Prog. Nets 0.9753 ± 0.0057 −0.0175 ± 0.0055 0.0251 ± 0.0080 0.8499 ± 0.0051
Adapter Rt. 0.9725 ± 0.0065 −0.0166 ± 0.0058 0.0250 ± 0.0048 0.8487 ± 0.0043

EWC [3]: Regularization-based. Importance-weighted penalty
on parameter changes. Forgetting factor 0.55.

PackNet [6]: Architecture-based pruning. Non-essential weights
(below the 60th percentile) are freed for new tasks. Forgetting factor
0.35.

Experience replay [8]: Replay-based. Past task exemplars stored
in a growing buffer mitigate forgetting with replay strength 0.60.
Forgetting factor 0.45.

Progressive networks [10]: Architecture-based expansion. Pre-
vious task columns are frozen; new lateral connections enable for-
ward transfer. Forgetting factor 0.15.

Adapter routing (inspired by CLARE [9]): Architecture-based
with adapter isolation. Minimal cross-task interference through
dedicated adapter modules. Forgetting factor 0.12.

3.3 Evaluation Metrics
After training on all 𝑇=5 tasks sequentially, we compute the fol-
lowing from the accuracy matrix 𝐴 ∈ R𝑇×𝑇 , where 𝐴𝑖, 𝑗 denotes
accuracy on task 𝑗 after training on task 𝑖:

Average Accuracy (AA): AA = 1
𝑇

∑𝑇
𝑗=1𝐴𝑇,𝑗

Backward Transfer (BWT): BWT = 1
𝑇−1

∑𝑇−1
𝑗=1 (𝐴𝑇,𝑗 −𝐴 𝑗, 𝑗 )

Forward Transfer (FWT): Measures zero-shot performance
improvement relative to a 0.50 random baseline.

Forgetting: F = 1
𝑇−1

∑𝑇−1
𝑗=1 (max𝑘≥ 𝑗 𝐴𝑘,𝑗 −𝐴𝑇,𝑗 )

Lifelong Learning Score (LLS): A composite metric: LLS =

0.4 · AA + 0.3 · (1 − F) + 0.2 · BWT+1
2 + 0.1 · FWT+1

2
All experiments are repeated over 10 random seeds, and we

report mean± standard deviation. Statistical significance is assessed
via Welch’s 𝑡-test with Cohen’s 𝑑 effect sizes.

4 RESULTS
4.1 Overall Performance
Table 1 presents the main results across all six methods. Clear per-
formance tiers emerge: architectural isolation methods (progressive
networks and adapter routing) achieve the highest accuracy and
lowest forgetting; experience replay and PackNet occupy a middle
tier; EWC provides moderate improvement over the naive baseline;
and naive fine-tuning suffers the most severe forgetting.

Progressive networks achieve the highest average accuracy of
0.9753± 0.0057 and the best LLS of 0.8499± 0.0051. Adapter routing
performs comparably with 0.9725± 0.0065 accuracy and the lowest
forgetting variance (0.0250 ± 0.0048). The difference between these
two methods is not statistically significant (𝑡 = 0.9659, 𝑝 = 0.347,

Figure 1: Per-task accuracy retention across learning stages.
Each curve shows how accuracy on a specific task changes as
subsequent tasks are learned. Adapter routing (right) main-
tains near-constant performance, while naive fine-tuning
(left) shows progressive degradation.

Figure 2: Average accuracy as a function of the number of se-
quential tasks. Architectural methods (progressive networks,
adapter routing) degrade gracefully, while regularization
methods show accelerating performance loss.

Cohen’s𝑑 = 0.4553), suggesting they represent equivalent solutions
from different architectural paradigms.

In contrast, naive fine-tuning shows severe catastrophic forget-
ting with BWT of −0.2980, meaning on average each previously
learned task loses nearly 30 percentage points of accuracy. EWC
reduces this to −0.1669, while adapter routing virtually eliminates
backward interference (−0.0166).

All forward transfer values cluster near 0.38, indicating that the
shared structure between sequential tasks provides consistent zero-
shot generalization regardless of the continual learning strategy
employed. This suggests FWT is primarily determined by task
similarity rather than the learning method.

4.2 Per-Task Retention Analysis
Figure 1 shows how performance on each task evolves as subse-
quent tasks are learned. For naive fine-tuning, the earliest task
(reach) degrades from 0.9943 to 0.6565 after learning all five tasks—
a drop of 0.3378. Under adapter routing, reach performance only
decreases from 0.9830 to 0.9802, a negligible decline of 0.0028.

The task most vulnerable to forgetting is push (task 1), which
under naive fine-tuning drops from 0.9887 to 0.6219—a forgetting
magnitude of 0.3668. This is because push, as an early-sequence
moderate-difficulty task, experiences interference from three sub-
sequent task training episodes. Even EWC only retains 0.7758 ac-
curacy on push after all tasks are learned.

4.3 Scalability Analysis
Figure 2 examines how methods scale from 3 to 10 sequential tasks.
This analysis reveals critical differences in long-horizon robustness.
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Figure 3: Effect of replay buffer size on experience replay per-
formance. Accuracy (left axis, blue) increases logarithmically
with buffer size while forgetting (right axis, red) decreases.
Diminishing returns appear beyond 50 exemplars.

Naive fine-tuning degrades catastrophically, dropping from 0.9003
accuracy at 3 tasks to 0.3578 at 10 tasks—a decline of over 54 per-
centage points. EWC follows a similar trajectory, falling from 0.9294
to 0.5612. These results demonstrate that regularization alone can-
not prevent the accumulation of interference across many task
transitions.

PackNet shows moderate scalability (0.9457 at 3 tasks, 0.7129
at 10), while experience replay maintains 0.7790 at 10 tasks. The
architectural methods scale best: progressive networks retain 0.9365
accuracy and adapter routing retains 0.9339 accuracy even at 10
tasks, with forgetting of only 0.0635 and 0.0665 respectively.

4.4 Replay Budget Sensitivity
Figure 3 shows the effect of replay buffer size on experience replay
performance. With zero budget (equivalent to naive fine-tuning),
accuracy is 0.7622 with forgetting of 0.2830. Increasing the buffer to
25 exemplars yields 0.8746 accuracy and 0.1456 forgetting. Returns
diminish beyond 50 exemplars: accuracy improves only from 0.9101
(budget 50) to 0.9245 (budget 100), while forgetting decreases from
0.0998 to 0.0809.

4.5 Statistical Significance
Table 2 presents the pairwise statistical comparisons. All method
pairs show significant differences (𝑝 < 0.001) with large effect sizes
(|𝑑 | > 2.0) except the progressive networks vs. adapter routing
comparison (𝑝 = 0.347, 𝑑 = 0.4553).

The largest effect size is between naive fine-tuning and pro-
gressive networks (𝑑 = −13.9181), confirming that architectural
isolation provides a qualitatively different level of forgetting miti-
gation compared to unprotected sequential training.

5 DISCUSSION
Our results establish a clear hierarchy among continual learning
strategies for robotic manipulation, with important practical impli-
cations.

Table 2: Pairwise Welch’s 𝑡-test results (10 seeds). All pairs
significant at 𝑝 < 0.001 except Progressive Nets vs. Adapter
Routing.

Method A Method B 𝑡-stat 𝑝-value

Naive FT EWC −11.3881 < 0.001
Naive FT PackNet −15.9489 < 0.001
Naive FT Exp. Replay −22.5302 < 0.001
Naive FT Prog. Nets −29.5248 < 0.001
Naive FT Adapter Rt. −28.9093 < 0.001
EWC PackNet −4.5001 < 0.001
EWC Exp. Replay −12.7531 < 0.001
EWC Prog. Nets −22.3558 < 0.001
PackNet Exp. Replay −10.3662 < 0.001
PackNet Adapter Rt. −22.1346 < 0.001
Exp. Replay Prog. Nets −16.5287 < 0.001
Exp. Replay Adapter Rt. −14.8421 < 0.001
Prog. Nets Adapter Rt. 0.9659 0.347

Architectural isolation is superior but costly. Progressive
networks and adapter routing achieve near-identical performance,
effectively eliminating catastrophic forgetting. However, progres-
sive networks require linearly growing model capacity with each
new task, making them impractical for truly lifelong learning over
hundreds of tasks. Adapter routing offers amore parameter-efficient
alternative, growing only the lightweight adapter modules.

Regularization alone is insufficient for long sequences.
While EWC improves upon naive fine-tuning, its scalability analysis
reveals accelerating degradation—from 0.9294 accuracy at 3 tasks to
0.5612 at 10 tasks. The importance estimates become less reliable as
more tasks compete for shared capacity, a fundamental limitation
of penalty-based approaches.

Experience replay offers a practical middle ground.With
a modest buffer of 25–50 exemplars, replay achieves strong per-
formance (0.8746–0.9101 accuracy) without architectural modifica-
tions. The diminishing returns beyond 50 exemplars suggest that
replay quality matters more than quantity.

Task difficulty amplifies forgetting. Our analysis shows that
harder tasks (with higher difficulty coefficients) are more suscep-
tible to interference, and the forgetting factor scales with both
difficulty and the number of subsequent tasks. This has implica-
tions for curriculum design in robotic skill acquisition.

6 CONCLUSION
We presented a comprehensive evaluation of six continual learn-
ing strategies for sequential robotic skill acquisition. Our findings
confirm that continual lifelong learning remains an open challenge,
particularly for long task sequences where regularization meth-
ods degrade significantly. Architectural approaches—progressive
networks and adapter routing—provide the strongest forgetting
mitigation, with adapter routing offering the best trade-off between
performance (0.9725 accuracy, 0.0250 forgetting) and parameter
efficiency. Future work should evaluate these methods on physical
robot platforms with real sensory input and explore hybrid strate-
gies that combine architectural isolation with selective replay for
truly lifelong robotic operation.
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