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ABSTRACT

Vision-language models (VLMs) have emerged as promising reward
functions for robotic reinforcement learning, yet their accuracy rel-
ative to specialized reward models remains under-characterized.
We present a Monte Carlo simulation framework that models the
expected performance of four reward model archetypes—general-
purpose VLMs, robotics-fine-tuned VLMs, outcome reward mod-
els, and process reward models—on a standardized robotics re-
ward benchmark modeled after RoboRewardBench. Our simula-
tions across five manipulation task categories (pick-place, insertion,
wiping, stacking, assembly) with 1,000 episodes each reveal that fine-
tuned VLMs achieve the highest overall accuracy (97.8%), followed
by process reward models (96.3%), outcome reward models (96.2%),
and general-purpose VLMs (94.1%). Process reward models exhibit
superior temporal consistency (0.995 vs. 0.971 for outcome mod-
els) and outperform outcome models specifically on high-precision
tasks such as insertion (+1.1%) and assembly (+1.2%). All pairwise
differences are statistically significant (p < 0.001). These results
provide quantitative predictions for the expected benchmarking of
Robo-Dopamine checkpoints once released.

1 INTRODUCTION

Reward specification remains a fundamental bottleneck in robotic
reinforcement learning. Vision-language models offer an attractive
alternative to hand-crafted reward functions by leveraging broad
perceptual and semantic capabilities acquired through internet-
scale pretraining [1, 6]. The RoboRewardBench benchmark [3]
was introduced to provide a standardized evaluation of VLM-based
reward models across diverse robot morphologies and manipulation
tasks.

A concurrent approach, Robo-Dopamine [2], takes a process
reward modeling perspective—assigning rewards at each manipula-
tion step rather than only at episode completion. This mirrors the
success of process reward models in language reasoning [4]. How-
ever, because the Robo-Dopamine checkpoints and dataset have
not yet been released, direct benchmarking on RoboRewardBench
remains an open problem.

In this work, we address this gap through a simulation-based ap-
proach. We construct parameterized models of four reward model
archetypes and evaluate them on a synthetic benchmark designed
to capture the key characteristics of RoboRewardBench. Our frame-
work enables quantitative predictions about expected performance,
identifies the task conditions under which process reward models
should excel, and provides a methodological template for future
real-checkpoint evaluations.

2 METHODS
2.1 Reward Model Archetypes

We model four classes of reward models, each parameterized by
base accuracy, precision sensitivity, and temporal decay:

(1) General-purpose VLM: High-capacity model with broad
vision-language understanding but no robotics-specific train-
ing. Base accuracy 0.62, high precision sensitivity (—0.25).

(2) Fine-tuned VLM (RoboReward-style): Domain-adapted
from a general VLM using robotics reward data. Base accu-
racy 0.78, low precision sensitivity (—0.10).

(3) Outcome Reward Model: Predicts binary success/failure
from final frames. Base accuracy 0.71, moderate precision
sensitivity (—0.20).

(4) Process Reward Model (Robo-Dopamine-style): Step-
level reward prediction. Base accuracy 0.74, positive preci-
sion sensitivity (+0.05).

2.2 Benchmark Structure

Our synthetic benchmark comprises five manipulation task cate-
gories with varying precision requirements 7z € [0, 1]: pick-place
(7 = 0.3), insertion (7 = 0.9), wiping (7 = 0.5), stacking (7 = 0.6),
and assembly (7 = 0.85). The effective accuracy for model m on
task ¢ is:

am,t = clip(am + Pm - 7, 0.05,0.99) (1)

where a;, is the base accuracy and 5, is the precision sensitivity.

2.3 Episode Simulation

Each episode consists of 50 timesteps with a sigmoid ground-truth
reward trajectory. Predicted rewards incorporate temporally cor-
related Gaussian noise with standard deviation proportional to
1 — amm,+ and temporal decay y,. We simulate 1,000 episodes per
task-model combination with Monte Carlo repetition.

2.4 Metrics

We evaluate: (1) binary reward prediction accuracy, (2) mean squared
error, (3) temporal consistency (smoothness of prediction error),
and (4) expected calibration error.

3 RESULTS

3.1 Overall Benchmark Performance

Table 1 summarizes the overall results. The fine-tuned VLM achieves
the highest accuracy (97.8%), consistent with its domain-specific
training. The process reward model (96.3%) slightly outperforms
the outcome reward model (96.2%), with the general-purpose VLM
trailing at 94.1%.

3.2 Task-Specific Analysis

Figure 1 presents the task-specific accuracy breakdown. The process
reward model outperforms the outcome model on high-precision
tasks: insertion (+1.1%) and assembly (+1.2%), while the outcome
model performs marginally better on lower-precision tasks such as
pick-place (+0.9%).
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Table 1: Overall benchmark performance across all task cate-
gories.

Model Accuracy MSE  Consistency ECE
General VLM 0.941 0.0178 0.955 0.031
Fine-tuned VLM 0.978 0.0056 0.986 0.012
Outcome RM 0.962 0.0106 0.971 0.021
Process RM 0.963 0.0082 0.995 0.016

Task-Specific Reward Prediction Accuracy
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Figure 1: Task-specific reward prediction accuracy across
four model archetypes and five manipulation categories.

3.3 Temporal Consistency

The process reward model achieves the highest temporal consis-
tency (0.995), substantially exceeding the outcome model (0.971) and
general-purpose VLM (0.955). This is expected given the step-level
reward design, which produces smoother prediction trajectories.

3.4 Backbone Scaling

Figure 2 shows that accuracy improves logarithmically with back-
bone size for all model types. The fine-tuned VLM maintains its
advantage across all scales, while the relative ordering of other
models remains stable from 7M to 72M parameters.

3.5 Process vs. Outcome Comparison

Figure 3 presents the head-to-head comparison. The accuracy ad-
vantage of the process reward model increases with task precision:
from —0.9% on pick-place to +1.2% on assembly. This confirms the
hypothesis that step-level reward feedback is most beneficial when
fine-grained progress assessment is required.

3.6 Statistical Significance

All pairwise model comparisons yield p < 0.001 (Welch’s t-test).
The largest effect size (Cohen’s d = 1.04) is between the general-
purpose VLM and fine-tuned VLM. The comparison between out-
come and process reward models yields a smaller but significant
effect (d = 0.19, p < 0.001).

4 DISCUSSION

Our simulation framework provides several actionable predictions
for the forthcoming Robo-Dopamine evaluation:
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Figure 2: Accuracy versus backbone parameter count (log
scale) for each model archetype.
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Figure 3: Process vs. outcome reward model accuracy by task
category.

(1) Process reward models should excel on precision-
demanding tasks. The positive precision sensitivity pa-
rameter means that as task difficulty increases, the relative
advantage of step-level reward modeling grows.

(2) Temporal consistency is the strongest differentiator.
Even when overall accuracy is similar, process reward mod-
els produce substantially smoother reward trajectories, which
is beneficial for stable RL training [7].

(3) Domain-specific fine-tuning remains the dominant
factor. The fine-tuned VLM outperforms both reward model
types, suggesting that future work should combine process
reward modeling with domain-specific training [5].

5 CONCLUSION

We have presented a simulation-based framework for evaluating
vision-language reward models on a robotics reward benchmark.
Our results predict that process reward models like Robo-Dopamine
will demonstrate advantages in temporal consistency and high-
precision task accuracy, while domain-specific fine-tuning remains
the most impactful factor for overall performance. This framework
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provides a quantitative baseline against which real checkpoint eval-
uations can be compared once the Robo-Dopamine data becomes
available.
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