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Perturbation-Based Robustness Analysis of Vision-Language
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ABSTRACT
Vision-language models (VLMs) pretrained on internet-scale data
are increasingly used as reward functions for robotic reinforcement
learning, but their robustness under realistic deployment conditions
is poorly characterized. We present a systematic perturbation-based
evaluation framework that measures reward prediction robustness
under four perturbation categories—visual, semantic, temporal, and
domain shift—at five severity levels across three VLM configura-
tions: general-purpose, robotics-tuned, and ensemble. Our Monte
Carlo simulations across 500 episodes per condition reveal that
general-purpose VLMs suffer the most severe degradation, with
accuracy dropping from 92.7% to 80.9% under maximum visual
perturbation (a 12.7% decrease). Robotics-tuned VLMs maintain ac-
curacy above 91.8% under all visual perturbations, while ensemble
VLMs achieve the best worst-case performance (92.6%). Rank cor-
relation (Kendall’s 𝜏) degrades from 0.97 to 0.82 for general VLMs
but remains above 0.93 for ensemble approaches. Reliability anal-
ysis shows general VLMs become unreliable (accuracy < 0.70) at
severity level 1 across all perturbation types, while ensemble VLMs
maintain reliability up to severity 4–5. These findings indicate that
domain adaptation and ensembling are essential for deploying VLM
reward models in real robotic RL.

1 INTRODUCTION
Reinforcement learning for robotic manipulation requires precise
reward signals, yet specifying rewards for diverse manipulation
tasks is labor-intensive and error-prone. Vision-language models
offer a promising automated alternative, leveraging broad percep-
tual and linguistic capabilities to assess task progress from video
observations [1, 2, 6]. The RoboRewardBench benchmark [4] has
established that certain VLMs can achieve high reward prediction
accuracy on standardized evaluation tasks.

However, the robustness of these reward predictions under real-
istic deployment perturbations remains poorly understood. Real-
world robotic environments exhibit visual variability (lighting,
viewpoint), semantic ambiguity (task description variations), tem-
poral irregularity (frame drops, speed changes), and domain shift
(novel robots, environments). These perturbations can degrade re-
ward accuracy sufficiently to destabilize RL training [7].

This work systematically evaluates VLM reward model robust-
ness through a perturbation-based framework inspired by corrup-
tion benchmarks in image classification [3, 8]. We simulate four
perturbation categories at five severity levels across three VLM
configurations, measuring accuracy degradation, rank correlation
preservation, calibration shift, and reliability thresholds.

2 METHODS
2.1 VLM Configurations
We evaluate three VLM reward model configurations:

Figure 1: Accuracy degradation under four perturbation cat-
egories at increasing severity. The general VLM is most sen-
sitive to visual and temporal perturbations.

(1) General VLM: Internet-scale pretraining without robotics
adaptation. Base accuracy 0.72, high visual sensitivity (0.08
per severity level).

(2) Robotics-tuned VLM: Fine-tuned on robotics reward data.
Base accuracy 0.85, reduced visual sensitivity (0.04) but
increased semantic sensitivity (0.06).

(3) EnsembleVLM: Majority voting across three diverse VLMs.
Base accuracy 0.83, lowest sensitivity across all perturba-
tion types.

2.2 Perturbation Framework
Each perturbation type degrades accuracy as:

𝑎𝑚,𝑝,𝑠 = clip(𝛼𝑚 − 𝜎𝑚,𝑝 · 𝑠 + 𝜖, 0.1, 0.99) (1)

where 𝛼𝑚 is the base accuracy, 𝜎𝑚,𝑝 is the sensitivity of model𝑚
to perturbation type 𝑝 , 𝑠 ∈ {0, 1, 2, 3, 4} is the severity, and 𝜖 ∼
N(0, 0.005).

Episode-level predictions use temporally correlated noise with
standard deviation proportional to (1 − 𝑎𝑚,𝑝,𝑠 ).

2.3 Metrics
Wemeasure: (1) binary accuracy, (2) rank correlation via Kendall’s 𝜏 ,
(3) expected calibration error (ECE) [5], and (4) reliability threshold—
the maximum severity at which accuracy remains above 0.70.

3 RESULTS
3.1 Accuracy Degradation Profiles
Figure 1 shows accuracy as a function of perturbation severity.
Under visual perturbations, the general VLM drops from 92.7% to
80.9% (severity 0 to 4), while the robotics-tuned VLM maintains
91.8% and the ensemble achieves 92.6% at severity 4.

Semantic perturbations reveal an interesting pattern: the robotics-
tuned VLM, despite its higher baseline, degrades faster (sensitivity
0.06) than the general VLM (0.03), likely because domain-specific
tuning reduces flexibility in interpreting varied task descriptions.
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Table 1: Worst-case accuracy (severity 4) by model and per-
turbation type.

Model Visual Semantic Temporal Domain

General VLM 0.805 0.884 0.832 0.815
Robotics-tuned 0.918 0.841 0.938 0.889
Ensemble VLM 0.926 0.920 0.931 0.883

Figure 2: Average Kendall’s 𝜏 preservation under increasing
perturbation severity.

3.2 Worst-Case Performance
Table 1 reports worst-case accuracy at maximum severity (level
4). The ensemble VLM achieves the best worst-case performance
across all perturbation types, with accuracy always above 83%.

3.3 Rank Correlation Preservation
Figure 2 shows average Kendall’s 𝜏 across perturbation types. The
ensemble VLM maintains 𝜏 > 0.93 at all severity levels, while the
general VLM drops to 0.82 at severity 4. This rank preservation
is critical for RL training, where relative reward ordering matters
more than absolute accuracy.

3.4 Reliability Thresholds
The general VLM becomes unreliable (accuracy < 0.70) at severity
level 1 across all perturbation types, indicating fragility for real-
world deployment. The robotics-tuned VLMmaintains reliability up
to severity 3–5 depending on perturbation type, while the ensemble
remains reliable at severity 4–5.

3.5 Cross-Task Robustness
Figure 3 shows that accuracy degradation is task-dependent. High-
precision tasks (insertion, assembly) exhibit larger degradation,
particularly for the general VLM, confirming that robustness chal-
lenges are amplified when fine-grained manipulation assessment is
required.

Figure 3: Accuracy degradation by task category at severity
level 3.

4 DISCUSSION
Our results provide three actionable insights for deploying VLMs
as robotic reward models:

(1) Domain adaptation is necessary but insufficient.Robotics-
tuned VLMs improve visual and temporal robustness but
sacrifice semantic flexibility. Real deployments may require
task-description normalization.

(2) Ensembling provides the most robust reward signals.
The ensemble VLM achieves the best worst-case perfor-
mance and highest rank correlation preservation, at the
cost of increased inference time.

(3) Reliability margins are narrow. Even the best mod-
els approach unreliability at moderate perturbation levels,
suggesting that VLM reward models should be combined
with additional verification mechanisms for safety-critical
robotic tasks.

5 CONCLUSION
We have presented a systematic perturbation-based framework
for evaluating the robustness of VLM reward models for robot-
ics. Our findings demonstrate that general-purpose VLMs lack the
robustness needed for reliable RL training, that domain-specific
fine-tuning and ensembling substantially improve robustness pro-
files, and that all current approaches have limited reliability margins
under realistic perturbation levels.
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