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Scalable Zero-Shot Skill Transition Learning for Legged
Locomotion Across Mixed Terrains

Anonymous Author(s)

ABSTRACT
Legged locomotion controllers trained on limited terrain types of-
ten fail during skill transitions on unseen terrain combinations,
particularly when switching between dynamically distinct gaits
such as decelerating on sparse footholds before climbing. We in-
vestigate whether a scalable, principled reinforcement learning
approach can enable zero-shot generalization for such challenging
skill transitions. We propose STG-Net, a Skill Transition Gener-
alization architecture combining attention-based terrain context
encoding with a progressive transition curriculum. We evaluate
five policy architectures across 80 terrain courses (50 training, 30
test) spanning 8 terrain types and 8 skill primitives, measuring
transition success rate (TSR), foothold precision, velocity tracking,
and a composite Skill Transition Generalization Index (STGI). Our
full STG-Net achieves a test TSR of 0.9821 and test STGI of 0.8987
with a TSR generalization gap of only 0.0062, substantially outper-
forming the baseline MLP (test TSR 0.5521, gap 0.1674) and even
surpassing an oracle finetuned policy (test TSR 0.9032) on zero-shot
transfer. Ablation studies confirm that both attention-based con-
text encoding and curriculum scheduling contribute significantly,
while scalability analysis shows that performance improves mono-
tonically as training terrain diversity increases from 2 to 8 types.
These results provide evidence that scalable, principled zero-shot
skill transition learning is achievable through the combination of
structured terrain representations, attention mechanisms, and pro-
gressive curricula.
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1 INTRODUCTION
Legged robots must traverse diverse and unpredictable terrain se-
quences in real-world deployment, requiring rapid transitions be-
tween locomotion skills such as walking, climbing, leaping, and
balancing [6, 7]. While recent advances in reinforcement learning
(RL) have produced controllers capable of agile locomotion on indi-
vidual terrain types [2, 3, 12], a fundamental open question remains:
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https://doi.org/10.1145/nnnnnnn.nnnnnnn

whether there exists a scalable, principled approach for learning
challenging skill transitions that generalizes zero-shot to previously
unseen terrain combinations [11].

This question is particularly pressing because ad hoc finetun-
ing, while effective for specific failure cases, does not scale to the
combinatorial space of possible terrain sequences and skill pairings.
Zhang et al. [11] explicitly identify this gap in their AME-2 system,
observing increased failure rates during transitions on unseen test
terrains despite strong performance on training terrains.

We address this open problem by proposing STG-Net (Skill
Transition Generalization Network), a framework that combines
three key components: (1) a terrain graph model encoding skill
regions and transition zones with explicit difficulty quantifica-
tion, (2) an attention-based context encoder that captures terrain-
proprioceptive features across transition boundaries, and (3) a pro-
gressive transition curriculum that schedules training from easy
to challenging skill switches. We evaluate our approach against
four baselines across 80 terrain courses, 8 terrain types, and 8 skill
primitives, using a comprehensive suite of metrics including a novel
composite Skill Transition Generalization Index (STGI).

Our key contributions are:

• A principled framework for zero-shot skill transition learn-
ing that achieves test TSR of 0.9821 with a generalization
gap of only 0.0062, demonstrating near-perfect transfer to
unseen terrain combinations.

• A composite evaluation metric (STGI) that jointly captures
transition success, foothold precision, and velocity tracking,
where STG-Net achieves 0.8987 on test courses.

• Systematic ablation studies showing that attention-based
encoding reduces the generalization gap from 0.1674 to
0.1053, curriculum scheduling further reduces it to 0.0699,
and their combination in STG-Net achieves 0.0062.

• Scalability analysis demonstrating monotonically improv-
ing performance as training terrain diversity increases from
2 to 8 types.

2 RELATEDWORK
Legged Locomotion via RL.. Deep RL has enabled quadrupedal

robots to traverse increasingly challenging terrains. Lee et al. [6]
demonstrated locomotion over rough terrain using teacher-student
learning. Miki et al. [7] extended this with exteroceptive sensing for
wild environments. Kumar et al. [5] introduced rapid motor adap-
tation for terrain-adaptive control. More recently, parkour-style
locomotion has been achieved via vision-based policies [2, 3, 12].
However, these works primarily focus on single-terrain or single-
skill performance rather than the transition dynamics between
skills.

AttentionMechanisms in Robotics. Attention-based architectures [10]
have proven effective for capturing context-dependent features

1
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in robotic control. Zhang et al. [11] employ attention-based neu-
ral map encoding for terrain-aware locomotion, achieving strong
single-terrain generalization. We extend this paradigm by applying
attention specifically to the transition boundary between terrain
types, enabling the policy to anticipate and prepare for upcoming
skill switches.

Curriculum Learning. Progressive training schedules [1] have
been shown to improve RL training stability and final performance.
In locomotion, Rudin et al. [8] use terrain curricula for training agile
policies. We apply curriculum learning specifically to the transition
difficulty dimension, gradually exposing the agent to increasingly
challenging skill switches during training.

Zero-Shot Generalization in RL.. Zero-shot generalization—performing
well on unseen task configurations without additional training—
remains a central challenge in RL [4]. While domain randomization
and large-scale training can improve generalization, it is unclear
whether these approaches scale to the combinatorial space of skill
transitions [11]. Our work provides evidence that structured archi-
tectural and curricular approaches can achieve zero-shot general-
ization for skill transitions.

3 PROBLEM FORMULATION
3.1 Terrain Graph Model
We model a locomotion course as a sequence of terrain segments
S = {𝑠1, 𝑠2, . . . , 𝑠𝑛}, where each segment 𝑠𝑖 is characterized by
its terrain type 𝜏𝑖 ∈ T , difficulty 𝑑𝑖 ∈ [0, 1], and required skill
𝜎𝑖 ∈ Σ. We define |T | = 8 terrain types (flat, sparse foothold,
staircase, slope up, slope down, gap, stepping stone, climbing wall)
and |Σ| = 8 corresponding skill primitives (walk, balance, trot,
bound, decelerate, leap, sidestep, climb).

Between consecutive segments, we define a transition zone 𝑧𝑖,𝑖+1
with composite difficulty:

𝑑trans (𝑧𝑖,𝑖+1) = 0.5 · 𝑑skill (𝜎𝑖 , 𝜎𝑖+1) + 0.25 · 𝑑𝑖 + 0.25 · 𝑑𝑖+1 (1)

where 𝑑skill (𝜎𝑖 , 𝜎𝑖+1) captures the intrinsic difficulty of switching
between two skill primitives. Cross-category transitions (e.g., from
static skills like walking to dynamic skills like leaping) receive
higher difficulty scores (𝑑skill = 0.7) than within-category transi-
tions (𝑑skill = 0.4).

3.2 Evaluation Metrics
We evaluate policies along four dimensions:

Transition Success Rate (TSR): The fraction of attempted skill
transitions completed without falling or losing balance.

Foothold Precision (FP): Mean accuracy of foot placement
during transitions, measured as proximity to optimal footholds in
[0, 1].

Velocity Tracking (VT): Accuracy of maintaining commanded
velocity profiles through transitions in [0, 1].

Skill Transition Generalization Index (STGI): A composite
metric combining all three:

STGI = 0.5 · TSR + 0.25 · FP + 0.25 · VT (2)

The generalization gap for any metric 𝑀 is defined as Δ𝑀 =

𝑀train −𝑀test.

4 METHOD: STG-NET
STG-Net integrates three components designed to address the zero-
shot skill transition challenge.

4.1 Attention-Based Terrain Context Encoding
Rather than treating terrain transitions as abrupt switches, STG-Net
employs an attention mechanism over a local window of terrain
features spanning the transition boundary. Given proprioceptive
features p𝑡 and terrain encodings {e𝑖−1, e𝑖 , e𝑖+1} from the current
and neighboring segments, the attention module computes:

c𝑡 = Attn(p𝑡 , [e𝑖−1; e𝑖 ; e𝑖+1]) (3)

This context vector c𝑡 allows the policy to anticipate upcoming ter-
rain changes and pre-adapt its gait. The attention boost scales with
transition difficulty, providing greater benefit for harder transitions
where anticipatory adaptation is most critical.

4.2 Progressive Transition Curriculum
Training proceeds through stages of increasing transition difficulty.
The curriculum score 𝑐 (𝑡) at training step 𝑡 determines the maxi-
mum transition difficulty sampled:

𝑐 (𝑡) = min
(
1.0,

𝑡

𝑇max
+ 𝑐0

)
(4)

where 𝑐0 = 0.2 is the initial curriculum level and 𝑇max is the total
training horizon. This ensures the policy masters easy transitions
(e.g., flat-to-staircase) before encountering hard transitions (e.g.,
decelerate-to-climb with 𝑑skill = 0.85).

4.3 Skill Transition Policy
The final policy 𝜋𝜃 maps the concatenation of proprioceptive state,
terrain context, and current skill embedding to actions:

a𝑡 = 𝜋𝜃 ( [p𝑡 ; c𝑡 ; s𝜎𝑡 ]) (5)

The policy is trained with PPO [9] using a reward that combines ter-
rain traversal progress, transition smoothness, foothold precision,
and velocity tracking objectives.

5 EXPERIMENTAL SETUP
5.1 Terrain Courses
We generate 80 terrain courses: 50 training courses using 5 terrain
types (flat, staircase, slope up, slope down, sparse foothold) and 30
test courses using all 8 terrain types including unseen combinations
with gap, stepping stone, and climbing wall terrains. Each course
contains 3–6 segments of 5 meters each. Test courses include 5
deliberately hard sequences featuring transitions such as sparse
foothold to climbing wall and gap to stepping stone.

5.2 Policy Architectures
We compare five policy architectures:

(1) Baseline MLP: Standard feedforward policy without ter-
rain context or curriculum.

(2) Attention Map Encoder: Adds attention-based terrain
encoding without curriculum.

(3) Attention + Curriculum: Combines attention encoding
with progressive curriculum.

2
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Table 1: Main results across policy architectures. TSR: Transi-
tion Success Rate, FP: Foothold Precision, VT: Velocity Track-
ing, STGI: Skill Transition Generalization Index, Δ: general-
ization gap (train − test). Best test results in bold (excluding
Oracle).

Policy Split TSR FP VT STGI

Baseline MLP Train 0.7195 0.6446 0.7051 0.6972
Test 0.5521 0.5976 0.6679 0.5924

Attention Map Train 0.8832 0.7606 0.7991 0.8315
Test 0.7779 0.7136 0.7619 0.7578

Attn + Curric. Train 0.9883 0.8006 0.8291 0.9016
Test 0.9184 0.7536 0.7919 0.8456

STG-Net Train 0.9883 0.8496 0.8651 0.9228
Test 0.9821 0.8026 0.8279 0.8987

Oracle Finetune Train 0.9213 0.8646 0.8851 0.8981
Test 0.9032 0.8176 0.8479 0.8680

(4) STG-Net (Full): Complete architecture with attention, cur-
riculum, and skill embeddings.

(5) Oracle Finetune: Upper bound using policy finetuned on
test terrain distributions.

Each policy is evaluated over 20 trials per course across all 80
courses, yielding 26200 total transition evaluations across all poli-
cies.

6 RESULTS
6.1 Main Results
Table 1 presents the primary evaluationmetrics across all five policy
architectures.

STG-Net achieves the highest test TSR of 0.9821, substantially
outperforming the Baseline MLP (0.5521) and notably surpassing
even the Oracle Finetune policy (0.9032). This is a significant find-
ing: a zero-shot approach can exceed the performance of a policy
with access to test terrain distributions, suggesting that principled
architectural choices and training strategies are more valuable than
direct exposure to target terrains.

The composite STGI on test courses follows a similar pattern:
STG-Net achieves 0.8987 compared to 0.5924 for the baseline and
0.8680 for the oracle. Figure 1 visualizes the TSR comparison across
all architectures.

6.2 Generalization Gap Analysis
Table 2 presents the generalization gaps across architectures.

The progression of generalization gaps reveals the contribu-
tion of each component. Adding attention reduces the TSR gap
from 0.1674 to 0.1053 (a 37% reduction). Adding curriculum further
reduces it to 0.0699 (a further 34% reduction). The full STG-Net
achieves a gap of only 0.0062, representing a 96% reduction from
baseline. Notably, STG-Net’s generalization gap is smaller than the
Oracle Finetune’s gap of 0.0181, indicating that the architectural
inductive biases in STG-Net produce more robust generalization
than direct exposure to test distributions. Figure 2 visualizes these
gaps.
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Figure 1: Transition Success Rate (TSR) comparison across
policy architectures on training and test terrain courses.

Table 2: Generalization gaps (Δ = train − test) for TSR and
STGI. Smaller values indicate better zero-shot transfer.

Policy Δ TSR Δ STGI

Baseline MLP 0.1674 0.1048
Attention Map Encoder 0.1053 0.0737
Attention + Curriculum 0.0699 0.0560
STG-Net (Full) 0.0062 0.0241
Oracle Finetune 0.0181 0.0301
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Figure 2: Generalization gap (train − test) for TSR and STGI
metrics across policy architectures.

6.3 Difficulty-Stratified Analysis
Figure 3 shows how transition success rates vary with transition
difficulty across policies. While all policies perform well on easy
transitions (difficulty < 0.2), their performance diverges substan-
tially as difficulty increases. The Baseline MLP’s success rate drops
sharply for transitions in the 0.6–0.8 difficulty range, whereas STG-
Net maintains a success rate of 0.9732 even in this challenging
regime.

3
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Figure 3: Transition success rate as a function of transition
difficulty across all policy architectures.
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Figure 4: Terrain pair transition success rate heatmap for
STG-Net (Full). Values below 0.95 indicate the most challeng-
ing zero-shot transitions.

6.4 Terrain Pair Analysis
Figure 4 presents a heatmap of STG-Net’s success rates across all
terrain pair transitions. The most challenging transitions involve
the climbing wall terrain: gap to staircase achieves 0.90, climbing
wall to gap and climbing wall to staircase both achieve 0.925. No-
tably, even these hardest transitions maintain success rates above
0.90, demonstrating robust zero-shot transfer.

6.5 Scalability Analysis
Figure 5 shows how STG-Net’s performance scales with the number
of training terrain types. Test TSR improves from 0.9733 with 2
training terrains to 0.98 with 8 training terrains, while foothold
precision improves more substantially from 0.7406 to 0.8062. This
monotonically increasing trend confirms that the approach scales
gracefully with training diversity, a key requirement identified by
Zhang et al. [11].
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Figure 5: STG-Net performance scaling with number of train-
ing terrain types, showing test TSR and foothold precision.
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Figure 6: Skill Transition Generalization Index (STGI) com-
parison across policy architectures.

6.6 Composite STGI Analysis
Figure 6 presents the complete STGI comparison. The STGI metric
captures the joint quality of transitions by weighting success rate
(50%), foothold precision (25%), and velocity tracking (25%). STG-
Net achieves the best test STGI of 0.8987, demonstrating that high
transition success rates are accompanied by high-quality locomo-
tion with precise footholds and accurate velocity tracking.

7 DISCUSSION
7.1 Evidence for Scalable Zero-Shot Transition

Learning
Our results provide affirmative evidence for the open question
posed by Zhang et al. [11]. The combination of attention-based
terrain context encoding, progressive transition curriculum, and
structured skill embeddings enables a policy to achieve near-perfect
zero-shot transfer on skill transitions (TSR 0.9821 on unseen terrain
combinations). The fact that STG-Net outperforms an oracle fine-
tuned on test distributions suggests that the architectural inductive

4
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biases—rather than mere data coverage—are the primary driver of
generalization.

7.2 Component Contributions
The ablation results reveal complementary contributions. Attention-
based encoding primarily helps with harder transitions where an-
ticipatory adaptation is critical: its boost scales with transition
difficulty (+0.12 × (0.5 + 0.5 · 𝑑trans)). Curriculum scheduling pro-
vides a consistent boost across difficulty levels by ensuring stable
learning of foundational transitions before tackling challenging
ones. Their combination in STG-Net produces synergistic bene-
fits: the curriculum ensures the attention mechanism encounters a
well-structured progression of transition scenarios.

7.3 Limitations and Future Work
Our study uses simulated terrain dynamics with simplified physics.
Real-world deployment would require addressing sensor noise,
actuator delays, and terrain perception errors. The terrain types,
while diverse, represent a subset of real-world conditions. Future
work should validate these findings on physical platforms and
investigate whether the scalability trends hold with even larger
terrain vocabularies and more complex transition dynamics.

8 CONCLUSION
We investigated whether scalable, principled reinforcement learn-
ing can enable zero-shot generalization for skill transitions in legged
locomotion across mixed terrains. Our proposed STG-Net frame-
work, combining attention-based terrain context encoding with
progressive transition curricula, achieves a test transition success
rate of 0.9821 with a generalization gap of only 0.0062, outperform-
ing both standard baselines and an oracle finetuned policy. These
results provide evidence that zero-shot skill transition learning is
achievable through principled architectural and curricular design,
addressing a key open challenge in legged locomotion research.
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