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ABSTRACT

We investigate whether the near-linear scaling of the Scalable On-
line Post-training (SOP) framework persists for significantly larger
robot fleets beyond the 1-4 actor regime demonstrated empirically.
Through analytical modeling of the SOP actor-learner pipeline with
parameterized communication overhead, we simulate scaling behav-
ior for fleets of 1 to 128 robots under three communication models
(linear, VN , and log N). Under VN communication overhead, the
system achieves 57.8x speedup at 64 actors (90.4% efficiency) and
maintains >70% efficiency up to 162 actors. With log N overhead,
efficiency remains above 92.6% at 64 actors with a critical fleet size
of 256+. Linear communication overhead limits efficient scaling to
46 actors. We identify learner throughput saturation and bandwidth
constraints as the primary bottlenecks for large fleets and discuss
architectural modifications to extend the near-linear scaling regime.

1 INTRODUCTION

The Scalable Online Post-training (SOP) framework [6] couples dis-
tributed real-world data collection from a robot fleet with central-
ized online learning for VLA models. Empirically, SOP demonstrates
near-linear speedups when scaling from 1 to 4 actors. Whether this
favorable scaling extends to significantly larger fleets remains an
open question, as system bottlenecks in communication, learner
throughput, and synchronization latency may emerge at scale [3].

Understanding scaling limits is critical for the practical deploy-
ment of distributed robotic learning systems [2, 5]. We develop an
analytical model of the SOP pipeline to predict scaling behavior
and identify bottleneck thresholds.

2 SCALING MODEL
2.1 SOP Architecture

The SOP system consists of N robot actors collecting experience
in parallel and a central learner performing gradient updates. The
wall-clock time per training cycle is:

T
T(N) = max (% Tl) + Teomim(N) M

where Tgojiect is the serial data collection time, ey is the per-step
learning time, and Teomm (N) is the communication overhead.

2.2 Communication Models

We consider three overhead models reflecting different system
architectures:

e Linear: Toomm = aN (point-to-point communication)
e Sublinear: Teomm = VN (aggregation tree)
e Logarithmic: Teomm = @ log, N (hierarchical protocols)

2.3 Scaling Metrics

The speedup S(N) = T(1)/T(N) and scaling efficiency E(N) =
S(N)/N quantify how well the system utilizes additional actors.

Table 1: Speedup S(N) and efficiency E(N) at key fleet sizes.

Model N=16 N=64 N=128
S E S E S E

Linear 152 095 345 054 290 0.23
VN 158 099 578 090 984 0.77
logN 158 099 593 093 1079 0.84

3 RESULTS
3.1 Speedup Analysis

Table 1 shows that all models achieve near-linear scaling for N < 16,
consistent with SOP’s empirical results. Divergence occurs beyond
N = 32: linear overhead leads to decreasing speedup beyond 64
actors, while VN and log N models maintain useful scaling to 128+
actors.

3.2 Critical Fleet Size

The fleet size where efficiency drops below 70% is: 46 (linear), 162
(VN), and 256+ (log N). This suggests that with appropriate com-
munication infrastructure, SOP can scale to over 100 robots while
maintaining practical efficiency.

3.3 Bottleneck Analysis

Two bottlenecks emerge at scale: (1) bandwidth saturation when
aggregate data generation exceeds network capacity, and (2) learner
throughput saturation when the GPU cannot process updates as fast
as data arrives. Under our default parameters, the learner becomes
the primary bottleneck at approximately 300 actors.

4 DISCUSSION

Our analysis indicates that near-linear scaling can persist well
beyond 4 actors under favorable conditions. The key requirements
are:

(1) Sublinear communication overhead via hierarchical aggre-
gation

(2) Sufficient network bandwidth (100+ MB/s for 64 actors)

(3) Learner parallelism for N > 100 (multi-GPU or pipeline
parallelism)

Amdahl’s law [1] provides a lower bound assuming fixed serial
fraction (p = 0.95 gives max speedup of 20), while Gustafson’s
law [4] predicts better scaling for SOP’s growing workload model.
Our simulation results fall between these bounds, consistent with
SOP’s moderate serial fraction.

5 CONCLUSION

We predict that SOP’s near-linear scaling extends to 64+ actors
under VN communication overhead (90.4% efficiency) and to 128+
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actors under log N overhead (84.3% efficiency). The critical require-
ments are hierarchical communication protocols and adequate band-
width. These results encourage scaling SOP deployments to signifi-
cantly larger robot fleets.

REFERENCES

[1] Gene M Amdahl. 1967. Validity of the single processor approach to achieving large
scale computing capabilities. AFIPS Conference Proceedings 30 (1967), 483-485.

Anon.

Anthony Brohan et al. 2023. RT-2: Vision-Language-Action Models Transfer Web
Knowledge to Robotic Control. arXiv preprint arXiv:2307.15818 (2023).

Jeffrey Dean et al. 2012. Large scale distributed deep networks. Advances in Neural
Information Processing Systems 25 (2012).

John L Gustafson. 1988. Reevaluating Amdahl’s law. Commun. ACM 31, 5 (1988),
532-533.

Sergey Levine et al. 2016. End-to-end training of deep visuomotor policies. JMLR
17, 39 (2016), 1-40.

Yifeng Pan et al. 2026. SOP: A Scalable Online Post-Training System for Vision-
Language-Action Models. arXiv preprint arXiv:2601.03044 (2026).

175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231

232



	Abstract
	1 Introduction
	2 Scaling Model
	2.1 SOP Architecture
	2.2 Communication Models
	2.3 Scaling Metrics

	3 Results
	3.1 Speedup Analysis
	3.2 Critical Fleet Size
	3.3 Bottleneck Analysis

	4 Discussion
	5 Conclusion
	References

