

Scaling Limits of the SOP Actor-Learner Framework for Large Robot Fleets

Anonymous Author(s)

ABSTRACT

We investigate whether the near-linear scaling of the Scalable Online Post-training (SOP) framework persists for significantly larger robot fleets beyond the 1–4 actor regime demonstrated empirically. Through analytical modeling of the SOP actor-learner pipeline with parameterized communication overhead, we simulate scaling behavior for fleets of 1 to 128 robots under three communication models (linear, \sqrt{N} , and $\log N$). Under \sqrt{N} communication overhead, the system achieves 57.8× speedup at 64 actors (90.4% efficiency) and maintains >70% efficiency up to 162 actors. With $\log N$ overhead, efficiency remains above 92.6% at 64 actors with a critical fleet size of 256+. Linear communication overhead limits efficient scaling to 46 actors. We identify learner throughput saturation and bandwidth constraints as the primary bottlenecks for large fleets and discuss architectural modifications to extend the near-linear scaling regime.

1 INTRODUCTION

The Scalable Online Post-training (SOP) framework [6] couples distributed real-world data collection from a robot fleet with centralized online learning for VLA models. Empirically, SOP demonstrates near-linear speedups when scaling from 1 to 4 actors. Whether this favorable scaling extends to significantly larger fleets remains an open question, as system bottlenecks in communication, learner throughput, and synchronization latency may emerge at scale [3].

Understanding scaling limits is critical for the practical deployment of distributed robotic learning systems [2, 5]. We develop an analytical model of the SOP pipeline to predict scaling behavior and identify bottleneck thresholds.

2 SCALING MODEL

2.1 SOP Architecture

The SOP system consists of N robot actors collecting experience in parallel and a central learner performing gradient updates. The wall-clock time per training cycle is:

$$T(N) = \max \left(\frac{T_{\text{collect}}}{N}, T_{\text{learn}} \right) + T_{\text{comm}}(N) \quad (1)$$

where T_{collect} is the serial data collection time, T_{learn} is the per-step learning time, and $T_{\text{comm}}(N)$ is the communication overhead.

2.2 Communication Models

We consider three overhead models reflecting different system architectures:

- **Linear:** $T_{\text{comm}} = \alpha N$ (point-to-point communication)
- **Sublinear:** $T_{\text{comm}} = \alpha \sqrt{N}$ (aggregation tree)
- **Logarithmic:** $T_{\text{comm}} = \alpha \log_2 N$ (hierarchical protocols)

2.3 Scaling Metrics

The speedup $S(N) = T(1)/T(N)$ and scaling efficiency $E(N) = S(N)/N$ quantify how well the system utilizes additional actors.

Table 1: Speedup $S(N)$ and efficiency $E(N)$ at key fleet sizes.

Model	N=16		N=64		N=128	
	S	E	S	E	S	E
Linear	15.2	0.95	34.5	0.54	29.0	0.23
\sqrt{N}	15.8	0.99	57.8	0.90	98.4	0.77
$\log N$	15.8	0.99	59.3	0.93	107.9	0.84

3 RESULTS

3.1 Speedup Analysis

Table 1 shows that all models achieve near-linear scaling for $N \leq 16$, consistent with SOP’s empirical results. Divergence occurs beyond $N = 32$: linear overhead leads to *decreasing* speedup beyond 64 actors, while \sqrt{N} and $\log N$ models maintain useful scaling to 128+ actors.

3.2 Critical Fleet Size

The fleet size where efficiency drops below 70% is: 46 (linear), 162 (\sqrt{N}), and 256+ ($\log N$). This suggests that with appropriate communication infrastructure, SOP can scale to over 100 robots while maintaining practical efficiency.

3.3 Bottleneck Analysis

Two bottlenecks emerge at scale: (1) bandwidth saturation when aggregate data generation exceeds network capacity, and (2) learner throughput saturation when the GPU cannot process updates as fast as data arrives. Under our default parameters, the learner becomes the primary bottleneck at approximately 300 actors.

4 DISCUSSION

Our analysis indicates that near-linear scaling can persist well beyond 4 actors under favorable conditions. The key requirements are:

- (1) Sublinear communication overhead via hierarchical aggregation
- (2) Sufficient network bandwidth (100+ MB/s for 64 actors)
- (3) Learner parallelism for $N > 100$ (multi-GPU or pipeline parallelism)

Amdahl’s law [1] provides a lower bound assuming fixed serial fraction ($p = 0.95$ gives max speedup of 20), while Gustafson’s law [4] predicts better scaling for SOP’s growing workload model. Our simulation results fall between these bounds, consistent with SOP’s moderate serial fraction.

5 CONCLUSION

We predict that SOP’s near-linear scaling extends to 64+ actors under \sqrt{N} communication overhead (90.4% efficiency) and to 128+

117 actors under $\log N$ overhead (84.3% efficiency). The critical requirements
 118 are hierarchical communication protocols and adequate bandwidth. These results encourage scaling SOP deployments to significantly
 119 larger robot fleets.

120 **REFERENCES**

121 [1] Gene M Amdahl. 1967. Validity of the single processor approach to achieving large
 122 scale computing capabilities. *AFIPS Conference Proceedings* 30 (1967), 483–485.

123 [2] Anthony Brohan et al. 2023. RT-2: Vision-Language-Action Models Transfer Web
 124 Knowledge to Robotic Control. *arXiv preprint arXiv:2307.15818* (2023).

125 [3] Jeffrey Dean et al. 2012. Large scale distributed deep networks. *Advances in Neural
 126 Information Processing Systems* 25 (2012).

127 [4] John L Gustafson. 1988. Reevaluating Amdahl's law. *Commun. ACM* 31, 5 (1988),
 128 532–533.

129 [5] Sergey Levine et al. 2016. End-to-end training of deep visuomotor policies. *JMLR*
 130 17, 39 (2016), 1–40.

131 [6] Yifeng Pan et al. 2026. SOP: A Scalable Online Post-Training System for Vision-
 132 Language-Action Models. *arXiv preprint arXiv:2601.03044* (2026).

133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173

174 175
 175 176
 176 177
 177 178
 178 179
 179 180
 180 181
 181 182
 182 183
 183 184
 184 185
 185 186
 186 187
 187 188
 188 189
 189 190
 190 191
 191 192
 192 193
 193 194
 194 195
 195 196
 196 197
 197 198
 198 199
 199 200
 200 201
 201 202
 202 203
 203 204
 204 205
 205 206
 206 207
 207 208
 208 209
 209 210
 210 211
 211 212
 212 213
 213 214
 214 215
 215 216
 216 217
 217 218
 218 219
 219 220
 220 221
 221 222
 222 223
 223 224
 224 225
 225 226
 226 227
 227 228
 228 229
 229 230
 230 231
 231 232