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Scaling Limits of the SOP Actor-Learner Framework for Large
Robot Fleets
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ABSTRACT
We investigate whether the near-linear scaling of the Scalable On-
line Post-training (SOP) framework persists for significantly larger
robot fleets beyond the 1–4 actor regime demonstrated empirically.
Through analytical modeling of the SOP actor-learner pipeline with
parameterized communication overhead, we simulate scaling behav-
ior for fleets of 1 to 128 robots under three communication models
(linear,

√
𝑁 , and log𝑁 ). Under

√
𝑁 communication overhead, the

system achieves 57.8× speedup at 64 actors (90.4% efficiency) and
maintains >70% efficiency up to 162 actors. With log𝑁 overhead,
efficiency remains above 92.6% at 64 actors with a critical fleet size
of 256+. Linear communication overhead limits efficient scaling to
46 actors. We identify learner throughput saturation and bandwidth
constraints as the primary bottlenecks for large fleets and discuss
architectural modifications to extend the near-linear scaling regime.

1 INTRODUCTION
The Scalable Online Post-training (SOP) framework [6] couples dis-
tributed real-world data collection from a robot fleet with central-
ized online learning for VLAmodels. Empirically, SOP demonstrates
near-linear speedups when scaling from 1 to 4 actors. Whether this
favorable scaling extends to significantly larger fleets remains an
open question, as system bottlenecks in communication, learner
throughput, and synchronization latency may emerge at scale [3].

Understanding scaling limits is critical for the practical deploy-
ment of distributed robotic learning systems [2, 5]. We develop an
analytical model of the SOP pipeline to predict scaling behavior
and identify bottleneck thresholds.

2 SCALING MODEL
2.1 SOP Architecture
The SOP system consists of 𝑁 robot actors collecting experience
in parallel and a central learner performing gradient updates. The
wall-clock time per training cycle is:

𝑇 (𝑁 ) = max
(
𝑇collect

𝑁
,𝑇learn

)
+𝑇comm (𝑁 ) (1)

where𝑇collect is the serial data collection time,𝑇learn is the per-step
learning time, and 𝑇comm (𝑁 ) is the communication overhead.

2.2 Communication Models
We consider three overhead models reflecting different system
architectures:

• Linear: 𝑇comm = 𝛼𝑁 (point-to-point communication)
• Sublinear: 𝑇comm = 𝛼

√
𝑁 (aggregation tree)

• Logarithmic: 𝑇comm = 𝛼 log2 𝑁 (hierarchical protocols)

2.3 Scaling Metrics
The speedup 𝑆 (𝑁 ) = 𝑇 (1)/𝑇 (𝑁 ) and scaling efficiency 𝐸 (𝑁 ) =

𝑆 (𝑁 )/𝑁 quantify how well the system utilizes additional actors.

Table 1: Speedup 𝑆 (𝑁 ) and efficiency 𝐸 (𝑁 ) at key fleet sizes.

Model N=16 N=64 N=128
𝑆 𝐸 𝑆 𝐸 𝑆 𝐸

Linear 15.2 0.95 34.5 0.54 29.0 0.23√
𝑁 15.8 0.99 57.8 0.90 98.4 0.77

log𝑁 15.8 0.99 59.3 0.93 107.9 0.84

3 RESULTS
3.1 Speedup Analysis
Table 1 shows that all models achieve near-linear scaling for𝑁 ≤ 16,
consistent with SOP’s empirical results. Divergence occurs beyond
𝑁 = 32: linear overhead leads to decreasing speedup beyond 64
actors, while

√
𝑁 and log𝑁 models maintain useful scaling to 128+

actors.

3.2 Critical Fleet Size
The fleet size where efficiency drops below 70% is: 46 (linear), 162
(
√
𝑁 ), and 256+ (log𝑁 ). This suggests that with appropriate com-

munication infrastructure, SOP can scale to over 100 robots while
maintaining practical efficiency.

3.3 Bottleneck Analysis
Two bottlenecks emerge at scale: (1) bandwidth saturation when
aggregate data generation exceeds network capacity, and (2) learner
throughput saturation when the GPU cannot process updates as fast
as data arrives. Under our default parameters, the learner becomes
the primary bottleneck at approximately 300 actors.

4 DISCUSSION
Our analysis indicates that near-linear scaling can persist well
beyond 4 actors under favorable conditions. The key requirements
are:

(1) Sublinear communication overhead via hierarchical aggre-
gation

(2) Sufficient network bandwidth (100+ MB/s for 64 actors)
(3) Learner parallelism for 𝑁 > 100 (multi-GPU or pipeline

parallelism)
Amdahl’s law [1] provides a lower bound assuming fixed serial

fraction (𝑝 = 0.95 gives max speedup of 20), while Gustafson’s
law [4] predicts better scaling for SOP’s growing workload model.
Our simulation results fall between these bounds, consistent with
SOP’s moderate serial fraction.

5 CONCLUSION
We predict that SOP’s near-linear scaling extends to 64+ actors
under

√
𝑁 communication overhead (90.4% efficiency) and to 128+
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actors under log𝑁 overhead (84.3% efficiency). The critical require-
ments are hierarchical communication protocols and adequate band-
width. These results encourage scaling SOP deployments to signifi-
cantly larger robot fleets.
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