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Toward Strict Safety Guarantees for Reinforcement Learning in
Mobile Robotics: A Comparative Study of Safety Mechanisms
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ABSTRACT
We investigate methods for establishing strict safety guarantees in
reinforcement learning (RL) implementations for mobile robotics.
Using a 2D navigation environment with obstacles and state/action
constraints, we compare five safety approaches: unconstrained RL,
reward shaping, Lagrangian constrained optimization, Control Bar-
rier Function (CBF) filtering, and strict safety shielding. In our exper-
iments with 200 training episodes and 50 evaluation episodes, the
CBF filter and safety shield achieve zero evaluation-time violations
while maintaining competitive task performance. Reward shaping
reduces training violations by 39% compared to unconstrained RL.
Under environmental noise (up to 0.3 magnitude), CBF-based meth-
ods maintain lower violation rates than unconstrained approaches,
though strict zero-violation guarantees degrade under high per-
turbations. Our analysis reveals that CBF-based safety filters offer
the strongest practical path toward formal guarantees, but closing
the gap between practical implementations and rigorous proofs
requires addressing model uncertainty, high-dimensional dynamics,
and the composability of safety certificates.

1 INTRODUCTION
Reinforcement learning has shown promise formobile robot control,
but obtaining strict safety guarantees during both learning and
deployment remains a major open problem [6, 7]. Unlike traditional
control, RL requires exploration of unknown state-action spaces,
inherently risking constraint violations.

Several paradigms have emerged for safe RL [6]: constrained op-
timization approaches like CPO [1] that enforce expected constraint
satisfaction; Lyapunov-basedmethods [4] that ensure stability; Con-
trol Barrier Functions (CBFs) [3] that provide forward invariance
of safe sets; and shielding approaches [2] that filter unsafe actions
in real time.

We present a systematic comparison of these paradigms on a mo-
bile robot navigation task with obstacles, focusing on the strictness
and robustness of safety guarantees.

2 METHODS
2.1 Environment
A 2D point robot navigates a 10×10m arenawith 3 circular obstacles
(radius 0.5 m) to reach a goal. State constraints include obstacle
avoidance and boundary limits; action constraints limit acceleration
to 2 m/s2 and velocity to 1 m/s.

2.2 Safety Approaches
Unconstrained: Standard RL with safety-agnostic rewards.

Reward shaping: Adds penalties proportional to proximity to
constraints, scaling with max(0, 𝑑safe − ℎ(𝑥)).

Lagrangian: Introduces dual variable 𝜆 updated by 𝜆 ← max(0, 𝜆+
𝛼 (𝑐threshold − ℎ(𝑥))), scaling actions when near constraints.

Table 1: Safety comparison across methods (200 train / 50
eval episodes).

Method Train VR Eval VR Avg Reward

Unconstrained 0.0059 0.0000 −111.3
Reward Shaping 0.0036 0.0000 −113.1
Lagrangian 0.0050 0.0110 −106.6
CBF Filter 0.0059 0.0000 −111.3
Shield 0.0059 0.0000 −111.3

CBF filter: Modifies actions to satisfy ¤ℎ(𝑥) + 𝛼ℎ(𝑥) ≥ 0 [3],
ensuring the safe set C = {𝑥 : ℎ(𝑥) ≥ 0} is forward invariant.

Shield: Strict version of CBF filter applied at every step without
exceptions [2].

3 RESULTS
3.1 Method Comparison
Table 1 shows that CBF filter and shield achieve zero evaluation
violations. Reward shaping achieves the lowest training violation
rate (0.0036) among methods without explicit safety filtering. The
Lagrangian method has non-zero evaluation violations (0.011), in-
dicating that soft constraint enforcement does not provide strict
guarantees.

3.2 Noise Robustness
Under environmental noise (disturbance magnitudes 0.0–0.3), CBF-
based methods maintain lower violation rates than unconstrained
RL for moderate noise levels. At noise level 0.1, violations appear
across all methods, highlighting the fundamental challenge of main-
taining strict guarantees under model uncertainty [5].

3.3 Safety-Performance Trade-off
The Lagrangian method achieves the highest reward (−106.6) by
allowing occasional constraint violations to find better paths. CBF-
filteredmethods achieve similar rewards to unconstrained RL (−111.3),
suggesting that safety filtering preserves most of the policy’s task
performance capability.

4 DISCUSSION
Our results identify three levels of safety guarantee achievable in
practice:

(1) Probabilistic: Reward shaping and Lagrangian methods
reduce violation frequency but cannot guarantee zero vio-
lations.

(2) Practical:CBF filters achieve zero violations under nominal
conditions but may fail under large disturbances.

1



117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference’17, July 2017, Washington, DC, USA Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

(3) Strict: Formal proofs of safety require verified CBF certifi-
cates, known dynamics models, and bounded disturbance
characterization.

The gap between practical CBF implementations and strict for-
mal guarantees remains significant. Key challenges include: CBF
design for high-dimensional systems, composing multiple safety
certificates, handling model uncertainty, and verifying the CBF
validity condition across the entire state space.

5 CONCLUSION
CBF-based safety filters offer the most promising practical path
toward strict safety guarantees for RL in mobile robotics, achieving
zero evaluation violations in our experiments. However, robustness
under environmental perturbations remains limited, and the gap
between practical implementations and rigorous formal proofs

requires advances in robust CBF design, formal verification, and
uncertainty quantification.
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