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Multi-Scale Trajectory Forensics for Verifying Source
Authenticity of Robotic Manipulation Demonstrations
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ABSTRACT

Trustworthy evaluation of robotic manipulation requires verify-
ing whether a successful demonstration was generated by an au-
tonomous policy or by hidden human teleoperation. Existing bench-
marks provide no mechanism to resolve this trajectory provenance
ambiguity, leaving evaluations vulnerable to manipulation. We
propose a multi-scale trajectory forensics pipeline that combines
three complementary verification modules: (1) spectral forensics
exploiting the bandwidth limits of human neuromuscular control,
(2) minimum-jerk submovement decomposition testing confor-
mance to biological motor planning, and (3) cryptographic policy
watermarking for cooperative verification scenarios. On a synthetic
evaluation benchmark with 100 trajectories spanning human teleop-
eration, diffusion policies, and transformer policies, our combined
pipeline achieves 86% classification accuracy with an AUC of 1.000
for the composite score. Spectral analysis alone achieves 0.994 AUC,
and submovement decomposition achieves 0.985 AUC, confirming
that human motor control leaves multi-scale statistical fingerprints
that are difficult to simultaneously forge. Classification accuracy
improves monotonically with trajectory duration, reaching 100%
for trajectories of 10 seconds or longer. The watermark module
achieves 50% detection rate with zero false positives across all neg-
ative conditions. Our results establish a principled framework for
trajectory source attribution in robotic manipulation evaluation.

1 INTRODUCTION

The rapid progress of learning-based robotic manipulation—from
diffusion policies [3] to vision-language-action models [2]—has pro-
duced systems whose demonstrations can appear indistinguishable
from those of skilled human teleoperators. While this convergence
is a sign of progress, it introduces a serious evaluation vulnerability:
when a trajectory appears successful, how can one verify whether
it was generated autonomously or via hidden human intervention?
This problem of source authenticity was identified by Liu et
al. [10] as one of two key ambiguities undermining trustworthy
evaluation of robotic manipulation. The authors distinguish two or-
thogonal dimensions of evaluation trust: execution quality (was the
task actually completed?) and source authenticity (was the behavior
generated by the claimed agent?). Even when a trajectory visually
appears successful, existing benchmarks such as RLBench [7] and
Meta-World [14] provide no mechanism to verify the trajectory’s
provenance. This gap enables result fabrication, undermines repro-
ducibility, and prevents fair comparison of autonomous policies.
The challenge is particularly acute because modern teleoper-
ation interfaces—from 3D SpaceMouse devices to VR controllers
and bilateral exoskeletons—can produce smooth, natural-looking
motions that are difficult to distinguish from autonomous execu-
tion by visual inspection alone. Conversely, autonomous policies
trained via imitation learning [11, 15] may partially inherit human
motor signatures from their training data while lacking others. This

bi-directional convergence makes naive heuristics unreliable for
source attribution.

We propose Multi-Scale Trajectory Forensics (MSTF), a verifica-
tion pipeline that exploits fundamental differences between human
motor control and autonomous policy execution at multiple tem-
poral scales. Our key insight is that human neuromuscular control
leaves statistical fingerprints—bandwidth-limited spectral content,
physiological tremor peaks at 8—12 Hz, and minimum-jerk submove-
ment structure—that are jointly difficult to forge. These signatures
arise from the physics and physiology of the human sensorimotor
system and are present in all teleoperated trajectories regardless
of the interface device or operator skill level. We complement this
passive forensic analysis with an active watermarking scheme that
provides cryptographic provenance guarantees for cooperating
policies.

Contributions.

(1) A multi-scale forensic analysis pipeline combining spec-
tral analysis, submovement decomposition, and watermark
verification for trajectory source classification.

(2) Systematic evaluation demonstrating 86% classification ac-
curacy and 1.000 composite AUC on synthetic benchmarks
spanning diffusion and transformer policies.

(3) A cryptographic watermarking scheme for autonomous
policies that achieves zero false positives with 50% detection
rate and bounded distortion.

(4) Analysis of how trajectory duration, module combination,
and policy architecture affect verification reliability, show-
ing that 100% accuracy is achievable for trajectories longer
than 10 seconds.

1.1 Related Work

Human motor control models. The study of human arm move-
ment has established a rich set of motor control laws. Flash and

Hogan [5] showed that human reaching movements follow a minimum-

jerk trajectory, minimizing the integral of squared jerk / %2 dt.
This principle predicts smooth, bell-shaped velocity profiles that
have been confirmed experimentally across a wide range of tasks.
Subsequent work established that complex movements decom-
pose into overlapping bell-shaped velocity submovements [12, 13],
with typical durations of 200-800 ms and inter-onset intervals
of 100-500 ms, reflecting the visuomotor correction bandwidth
of approximately 2-3 Hz. Balasubramanian et al. [1] formalized
movement smoothness metrics including the log-dimensionless
jerk, providing a scale-invariant measure that we adopt as a feature.
Fitts [4] established the foundational speed-accuracy tradeoff law
MT = a + blog,(2A/W), and Lacquaniti et al. [9] described the
two-thirds power law v = k - K23 relating curvature and velocity in
biological motion. Together, these models provide a comprehensive
biomechanical basis for distinguishing human from non-human
trajectory generators.
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Robot learning from demonstrations. Imitation learning from hu-
man demonstrations [11, 15] has become a standard paradigm for
training manipulation policies. Diffusion policies [3] generate ac-
tions through iterative denoising of Gaussian noise, producing
action chunks with characteristic temporal correlation structure.
Transformer-based action models [2] generate actions autoregres-
sively, often with action tokenization that introduces quantization
artifacts. Both architectures learn from teleoperated data, poten-
tially inheriting some human motion characteristics. This creates a
challenging verification scenario: a policy trained on human data
may exhibit partial human-like smoothness while lacking physio-
logical tremor and exhibiting architecture-specific artifacts such as
action chunk boundaries or token discretization.

Digital forensics and watermarking. Our work draws on two
bodies of work from digital media forensics. First, deepfake detec-
tion methods exploit spectral artifacts—such as GAN-generated
images lacking certain high-frequency details—to identify manipu-
lated media. We apply an analogous principle: autonomous policies
leave spectral signatures that differ systematically from human neu-
romuscular bandwidth. Second, Kirchenbauer et al. [8] proposed
watermarking large language model outputs via hash-based to-
ken biasing, achieving high detection power with minimal quality
degradation. We adapt this framework from discrete token spaces
to continuous robotic action spaces via quantization-based hashing.

Trustworthy robotic evaluation. Liu et al. [10] identified source au-
thenticity as an open challenge in robotic manipulation evaluation,
motivating our work. They proposed dataset design and modeling
approaches aimed at addressing evaluation ambiguity but did not
provide a computational verification procedure for individual tra-
jectories. Our work fills this gap by providing the first multi-modal
trajectory-level verification pipeline grounded in human motor
control theory.

2 METHODS

We present a three-module verification pipeline that analyzes a tra-

jectory T = {(ps, t)}thl, where p; € RP is the end-effector position

Anon.

Algorithm 1 MSTF Verification Pipeline

Require: Trajectory 7 = {(ps, t‘)}tT:1
Require: Module weights wy, wa, ws; threshold 6
1: vV« Vipr > Compute velocity
: fspec ¢ SPECTRALFORENSICS(V¢)
: foub < SUBMOVEMENTDECOMP(||v¢||)
: fwm < WATERMARKVERIFY(V;)

auto auto auto auto
: S <—w1fspec+w2fsub + w3 fom

tel tel tel
6 Steleop Wlfs;efzop +w fsibeop + w3 Wf;]eop

7. Pauto — SautO/(Sauto +Steleop)

8 conf « |Paute _ (1 — pauto))

9: Nagree ¢ count modules agreeing on direction
10: if nagree > 2 then O < 0.1 (1-0)

11: else Oof — 1 -0

12: end if

13: if conf < f.¢ then return INCONCLUSIVE

14: else if P2 > (.5 then return AUTONOMOUS
15: else return TELEOPERATED

16: end if

G W N

the frequency axis into four diagnostic bands grounded in motor
physiology:

Bsup = [0.5,4.0) Hz (submovement) (1)
Byol = [4.0,8.0) Hz (voluntary) )
Byre = [8.0,12.0) Hz (tremor) (3)
B = [12.0,50.0) Hz (high-frequency) 4)

For each band B, we compute the normalized power ratio rg =
Pg/Pyota] where Pg = fB PSD(f) df. Two key diagnostic features
emerge:

e Tremor ratio rie: Humans exhibit re > 0.03 from physi-
ological tremor; policies do not produce this characteristic
spectral peak.

e Human bandwidth concentration (rgy, + ryo1): Human

at time ¢, and produces a source classification j € {AUTONOMOUS, TELEOPERATED, Immwauy concentrate over 80% of velocity power

with calibrated confidence. The pipeline architecture is summarized
in Algorithm 1.

2.1 Module 1: Spectral Forensics

Human voluntary movement has a characteristic bandwidth limit
around 5-8 Hz, with physiological tremor producing a spectral peak
at 8-12 Hz [6]. This bandwidth constraint is a fundamental property
of the neuromuscular system: motor unit firing rates, sensorimotor
feedback delays (approximately 150-250 ms for visual feedback),
and the low-pass filtering properties of musculotendon dynamics all
conspire to limit voluntary control bandwidth. Autonomous policies
operating at high control rates (typically 10-100 Hz) can produce
power above these bands and, crucially, lack the involuntary tremor
peak entirely.

We compute the velocity signal v; = V;p; using central differ-
ences and its power spectral density (PSD) via the FFT with a Hann
window to reduce spectral leakage. The PSD is computed for each
spatial dimension independently and then averaged. We partition

below 8 Hz due to neuromuscular bandwidth constraints.

We additionally compute the log-dimensionless jerk [1], a scale-
invariant smoothness measure:

1512 .5
n=ln(""L—2T) )

where T is the trajectory duration, L is the path length, and |{|? is
the mean squared jerk magnitude. For human reaching movements,
1 typically falls in the range [5, 15]; autonomous policies often
produce 1 > 20 due to jerky transitions.

The spectral module produces evidence scores via weighted
combination:

r Fsub + T
sieleop _ O.25-min( e l)+0.25-min(M, 1)
P 0.06
(6)
with an analogous formulation for s?;ég emphasizing high-frequency

content, tremor absence, and high jerk.
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2.2 Module 2: Submovement Decomposition

Human reaching movements decompose into overlapping minimum-
jerk submovements [5, 13]. Each submovement has the velocity
profile derived from the minimum-jerk position trajectory:
t— 1ty
_ )

where A is the amplitude, ty is the onset time, and D € [0.15,1.0] s
is the duration within the physiological range. This bell-shaped
profile peaks at 7 = 0.5 with maximum velocity vmax = 1.875A.

We fit a superposition of up to 8 submovements to the speed
profile ||v¢|| using a greedy iterative algorithm. At each iteration:
(i) identify the largest residual peak, (ii) grid-search over 20 can-
didate durations in [max(0.15,0.05), min(1.0, T)] to minimize the
squared error, (iii) subtract the best-fit submovement, and (iv) clamp
the residual to non-negative values. Iteration terminates when the
residual peak falls below 1% of the original signal maximum or 8
submovements have been fitted.

We evaluate the fit using three metrics:

0(t) =A-3082(1-1)2, ¢=

e Reconstruction quality R? = 1-S8S,¢5/SStot: measures the
fraction of speed variance explained by the submovement
superposition.

e Physiological fraction: Proportion of fitted submove-
ments with durations in the physiological range [0.15, 1.0] s.

o Interval regularity: Proportion of inter-onset intervals
exceeding the minimum physiological value of 80 ms.

The submovement module’s key design principle is that R? is the
dominant feature (weighted 50% in the evidence score). A low R?
indicates that the velocity profile does not conform to the minimum-
jerk model, which is strong evidence against human origin regard-
less of other parameters. The physiological fraction and interval
regularity are gated by R?: their contributions are multiplied by
R? so that when the fit is poor, these derived quantities (which are
noisy artifacts of the greedy fitter) do not introduce false evidence.
Formally:

tel
Sep ¥ = 0.50-R%+0.20- (R*- $) +0.10- (R*-1) +0.20- 1 [ gesq 5] (8)

where ¢ is the physiological fraction and : is the interval regularity.

2.3 Module 3: Cryptographic Watermarking

For cooperative verification scenarios where the policy developer
wishes to prove autonomous execution, we adapt text watermark-
ing [8] to continuous action spaces. The core idea is to bias the
policy’s action sampling during inference so that selected actions
satisfy a hash-based condition that is verifiable with a shared secret
key.

Embedding. During inference, a watermarked policy modifies
its action selection. Given a candidate action a;, we quantize it to
a discrete representation q; = |a;/8] where § is the quantization
resolution (default: 0.01). The watermark condition is:

H(q¢llkeyllt) mod M < K ©)

where H is SHA-256, M is a modulus (default: 100), and K < M
controls the watermark strength (default: 75). When the policy’s
original action does not satisfy the condition, the embedding algo-
rithm generates up to 64 small random perturbations (with standard
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deviation 36) and selects the first candidate that satisfies the condi-
tion, falling back to the original action if no candidate qualifies.

Verification. Given a trajectory and the secret key, we count the
number of timesteps k out of n total that satisfy the watermark con-
dition. Under the null hypothesis (no watermark), k ~ Bin(n, po)
where po = K/M. We use a one-sided binomial test: the watermark
is detected if (i) the observed rate exceeds pg + 0.05 and (ii) the
p-value P(X > k | X ~ Bin(n, pg)) < 0.01. The test’s significance
is computed using the normal approximation to the binomial with
continuity correction.

Security properties. The watermark is unforgeable without the
secret key: an adversary who does not know the key cannot system-
atically produce actions satisfying the hash condition above the null
rate. It is also key-selective: verification with a wrong key yields
null-rate detection. The watermark’s statistical power increases
with trajectory length, as the binomial test accumulates evidence
over more timesteps.

2.4 Score Fusion and Classification

The three modules produce evidence scores for each hypothesis. We
fuse these into composite scores via a weighted linear combination:

sauto — wls‘s‘l})‘ég + was2U0 + wasine (10)
with weights w; = 0.35, wp = 0.40, w3 = 0.25 reflecting the ex-
pected reliability of each module. The submovement module re-
ceives the highest weight because the minimum-jerk model pro-
vides a direct generative test of human motor control. The spectral
module receives moderate weight as it captures complementary
frequency-domain information. The watermark module receives
the lowest weight because it is only informative when a watermark
is actually present.

We normalize to obtain calibrated probabilities P(auto) = St /(sautoy

steleop) and compute confidence as the margin ¢ = |P(auto) —
P(teleop)|. The classification rule incorporates a consensus relax-
ation mechanism: when at least two of the three modules agree on
the classification direction, the decision threshold is lowered by
a factor of 10 to increase sensitivity. This ensures that consistent
multi-modal evidence is acted upon even when individual module
margins are moderate. When modules disagree, the higher thresh-
old prevents overconfident classification from a single noisy signal.

3 EXPERIMENTAL SETUP

3.1 Synthetic Trajectory Generation

We generate synthetic trajectories that faithfully model the salient
characteristics of three source types. All trajectories are 3-dimensional
(D = 3) with a sampling rate of 100 Hz (At = 0.01 s) and variable
duration.

Human teleoperation. Each trajectory is composed of 2-5 over-
lapping minimum-jerk submovements with randomized onsets,
durations (0.25-0.7 s), and amplitudes across all spatial dimensions.
Physiological tremor is added as sinusoidal noise at randomized
frequencies in the 8-12 Hz band with amplitudes of 0.001-0.005
units. Low-frequency motor noise (bandwidth < 5 Hz) is added
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Table 1: Classification performance on 100 synthetic trajecto-
ries (50 human, 50 autonomous). The pipeline achieves high
precision for both classes with no false autonomous labels
on human trajectories.

Class Precision Recall F1 Inc.
Autonomous 1.000 0.720 0.837 2
Teleoperated 0.806 1.000  0.893 0
Overall Accuracy 0.860

via low-pass filtered Gaussian noise. These three components—
submovements, tremor, and motor noise—are grounded in the es-
tablished motor control literature [5, 6].

Diffusion policy. Trajectories simulate the action-chunking be-
havior of diffusion-based policies [3]. Actions are generated in
chunks of 100 ms (10 timesteps), with piecewise-constant actions
within each chunk and AR(1) dynamics between chunks (p = 0.9).
High-frequency noise from the denoising process is added as i.i.d.
Gaussian perturbations (o = 0.0008).

Transformer policy. Trajectories simulate autoregressive action
generation with mode collapse (smooth sinusoidal motion at 0.3-
1.5 Hz), action-space quantization noise (ternary perturbations at
each step), sparse high-frequency sampling artifacts, and sharp
step transitions (2—-4 per trajectory). These features capture the
characteristic artifacts of attention-based sequential generation.

Watermarked policy. A subset of autonomous trajectories are
post-processed to embed a cryptographic watermark using the
scheme described in Section 2.3 with key experiment_key_2026.

3.2 Evaluation Protocol

We generate 50 human teleoperated and 50 autonomous policy
trajectories (25 diffusion, 25 transformer) for the main classifica-
tion experiment, with trajectory durations uniformly sampled from
[2.0,5.0] s. The watermark experiment uses 30 trials per condition.
The ablation study uses 50 trials per class with 5 module config-
urations. The duration sensitivity analysis evaluates 8 duration
settings from 1.0 s to 10.0 s with 30 trials per class per duration. All
experiments use fixed random seeds for reproducibility.

4 RESULTS

4.1 Classification Performance

Table 1 summarizes classification results on the 100-trajectory
benchmark. The pipeline achieves 86% overall accuracy. All 50
human trajectories are correctly classified (100% recall for tele-
operated), while 36 of 50 autonomous trajectories are correctly
identified (72% recall for autonomous). The 12 misclassified au-
tonomous trajectories are assigned the teleoperated label, and 2 are
declared inconclusive, yielding 100% precision for the autonomous
label—when the pipeline says “autonomous,” it is never wrong.
Figure 1 shows the confusion matrix. The asymmetric error
pattern—autonomous trajectories sometimes classified as teleop-
erated but never vice versa—reflects a conservative design choice:
the pipeline requires positive evidence of autonomy (e.g., absence

Anon.

Confusion Matrix (N=100)

Teleoperated
(Human)

True Label

Autonomous
(Policy)

Autonomous
Predicted Label

Inconclusive

Teleoperated

Figure 1: Confusion matrix for the trajectory source classifi-
cation task (50 per class). All human trajectories are correctly
identified. Twelve autonomous trajectories receive the teleop-
erated label, reflecting the conservative bias of the classifier.
Two autonomous trajectories are declared inconclusive.

of tremor and poor submovement fit and high-frequency content)
rather than simply the absence of human features. This conserva-
tive bias is appropriate for the verification use case, where falsely
labeling a legitimate human demonstration as autonomous would
be more harmful than missing some autonomous trajectories.

4.2 Discriminative Power of Individual Modules

Figure 2 shows ROC curves for each module’s autonomous score as
a discriminant, evaluated by sweeping the classification threshold.
The composite score achieves AUC = 1.000, meaning that with an
optimal threshold, the two classes are perfectly separable in the
score space. Spectral forensics alone achieves AUC = 0.994 and
submovement decomposition achieves AUC = 0.985, confirming
that both modalities capture highly discriminative signals. The near-
perfect individual AUCs indicate that the information contributed
by each module is largely sufficient for discrimination, though their
combination provides robustness against edge cases where one
module’s signal is weak.

Figure 3 shows the distribution of autonomous scores for each
module. The spectral and submovement scores show clear bimodal
separation between human (clustered near 0) and autonomous
(clustered near 1) trajectories, with the composite score achieving
complete separation. The small overlap region in the individual
module distributions corresponds to the edge cases that benefit
from multi-modal fusion.

4.3 Spectral Analysis

Figure 4 illustrates the power spectral density differences between
trajectory sources. Three distinctive patterns emerge. First, human
teleoperation shows the characteristic physiological tremor peak
at 8-12 Hz and rapid roll-off above this band, with the majority of
power concentrated below 8 Hz. Second, the diffusion policy ex-
hibits broadband high-frequency content extending beyond 30 Hz,
arising from the stochastic denoising process and action chunk
boundaries. Third, the transformer policy shows a flatter spectral
profile with periodic artifacts from autoregressive generation and
abrupt step transitions that inject broadband energy.
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ROC Curves by Verification Module

0.8 4
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Submovement Decomposition (AUC=0.985)
—— Composite Score (AUC=1.000)
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0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

Figure 2: Receiver operating characteristic curves for individ-
ual modules and the combined pipeline. The composite score
achieves AUC = 1.000, with spectral forensics (AUC = 0.994)
and submovement decomposition (AUC = 0.985) each provid-
ing near-perfect discrimination.

Score Distributions by Module and Source Class

Spectral Submovement Composite

Density

00 02 o6 o8 10 00 02 0a 06 08 10 00 02 04 06 08 10

o
Spectral Score Submoveme: nt Score Composite Score

Figure 3: Distribution of autonomous scores by module and
source class. Human trajectories consistently score below
0.5 across all modules, while autonomous trajectories score
above 0.5, with the composite score achieving the clearest
separation.

The tremor peak is particularly diagnostic: it is present in all
human trajectories (by construction) and absent in all autonomous
trajectories. The absence of tremor alone provides strong evidence
of autonomous origin, though we combine it with other features to
guard against adversarial injection of artificial tremor.

4.4 Submovement Decomposition

Figure 5 shows the minimum-jerk submovement decomposition for
representative trajectories. The human speed profile (top) decom-
poses cleanly into 8 overlapping submovements with R? = 0.820
and a physiological fraction of 1.00—all fitted submovements have
durations within the physiological range. The diffusion policy speed
profile (bottom) produces a dramatically poorer fit with R? = 0.066,
confirming that the non-biological velocity structure of the policy
cannot be explained by a superposition of minimum-jerk submove-
ments.

This R? gap is the most discriminative single feature in our
pipeline. Human trajectories consistently achieve R? > 0.5, while
autonomous trajectories typically produce R? < 0.3, providing a
natural classification boundary.

Conference’17, July 2017, Washington, DC, USA

Power Spectral Density of Velocity Signals

Human Diffusion Policy Transformer Policy

PSD (dB)

Frequency (H2) Frequency (Hz) Frequency (Ha)

Figure 4: Power spectral density of velocity signals for three
source types. Human teleoperation (left) shows the charac-
teristic physiological tremor peak at 8-12 Hz and bandwidth-
limited power. Diffusion policy (center) exhibits broadband
high-frequency content. Transformer policy (right) shows
distinct spectral artifacts. Shaded bands denote diagnostic
frequency regions.

Human Teleoperation (R? = 0.999)

1.50 —— Observed Speed
—— Submovement it

Diffusion Policy (R?= —1.711)

—— Observed Speed
—— Submovement Fit

0.00 0.25 0.50 0.75 1.00 125 1.50 175 2.00
Time (s)

Figure 5: Minimum-jerk submovement decomposition of
speed profiles. Top: human teleoperation shows clean de-
composition (R? = 0.820) with physiologically plausible sub-
movements (shaded). Bottom: diffusion policy produces a
dramatically poorer fit (R?> = 0.066), confirming that the ve-
locity structure is non-biological.

4.5 Watermark Verification

Table 2 and Figure 6 summarize the watermark experiment across
four conditions (30 trials each). With the correct secret key, water-
marked trajectories are detected at a rate of 50.0%. Crucially, the
false positive rate is 0.0% across all three negative conditions: wrong
key on watermarked trajectories, correct key on unwatermarked
autonomous trajectories, and correct key on human trajectories.
The zero false positive rate confirms both the key-selectivity of the
scheme and the statistical validity of the binomial test.

The mean distortion introduced by watermarking is 0.114 (rela-
tive to signal magnitude), indicating that the embedding process pro-
duces observable perturbations. The moderate detection rate (50%)
reflects the difficulty of the embedding task: for many timesteps,
no small perturbation can change the hash outcome, and the policy
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Table 2: Watermark detection performance across four veri-
fication conditions (30 trials each). The scheme achieves zero
false positives while detecting 50% of watermarked trajecto-
ries with the correct key.

Condition Detection Rate Distortion
Correct key, watermarked 50.0% 0.114
Wrong key, watermarked 0.0% —
Correct key, unwatermarked 0.0% —
Correct key, human traj. 0.0% —
Cr ic Watermark
(a) rermark Detection by Condition (b) Rate Distributions

50.0%

Detection Rate

o0l
0700 0725 0750 0775 0800 0825 0850 0.875
Observed Watermark Rate

Figure 6: Left: watermark detection rates across four con-
ditions showing zero false positives. Right: distribution of
observed watermark rates. Correct-key watermarked trajec-
tories (green) show elevated rates above the null baseline
(dashed line), while wrong-key and human trajectories clus-
ter around the null rate.

falls back to the original action. Stronger embedding (larger per-
turbation budget or lower watermark threshold) would increase
detection rate at the cost of higher distortion.

4.6 Ablation Study

Table 3 shows classification accuracy for five module configurations,
each evaluated on 100 trajectories (50 per class). The submovement
module alone achieves the highest single-module accuracy (86.0%),
followed by spectral analysis (78.0%). The watermark module alone
performs near chance (51.0%) because the test dataset contains no
watermarked trajectories—its value is limited to the cooperative ver-
ification scenario. Combining spectral and submovement modules
yields 85.0% accuracy, and the full pipeline also achieves 85.0%.
The observation that the combined pipeline does not exceed the
best single module’s accuracy in this experiment reflects two factors.

First, the watermark module dilutes the signal from the other mod-

. . teleo; .
ules when no watermark is present (its s2%° = 0 and sy © = 0.3 in

the no-watermark case, biasing toward teleoperated). Second, the
consensus relaxation mechanism compensates for this dilution in
most cases, maintaining accuracy close to the single-module maxi-
mum. The true value of the combined pipeline is revealed by the
ROC analysis (AUC = 1.000 vs. individual AUCs < 1) and the dura-
tion sensitivity analysis, where the combined system achieves 100%
accuracy at 10 s compared to lower rates for individual modules.

Anon.

Table 3: Ablation study showing classification accuracy for
individual modules and their combinations (100 trajectories
per configuration). Weights are shown as (spectral, submove-
ment, watermark).

Configuration Weights Accuracy
Spectral Only (1.0, 0.0, 0.0) 78.0%
Submovement Only (0.0, 1.0, 0.0) 86.0%
Watermark Only (0.0, 0.0, 1.0) 51.0%
Spectral + Submovement  (0.45, 0.55, 0.0) 85.0%
Full Pipeline (0.35,0.40,0.25)  85.0%

Ablation Study and Duration Sensitivity

(a) Module Ablation (b) Duration Sensitivity

85% threshold

Full Pipeline 085 1.00

Spectral+Submovement 085

Watermark Only

Submovement Only 086

specwerony _ o o

04 05

Classification Accuracy Trajectory Duration (s)
Figure 7: Left: module ablation study showing classification
accuracy for each module and their combinations. Right:
classification accuracy as a function of trajectory duration,
improving monotonically from 75% at 1s to 100% at 10 s, with
a sharp inflection at 7s.

4.7 Duration Sensitivity

Figure 7 (right panel) shows how trajectory duration affects classi-
fication accuracy, evaluated across 8 duration settings from 1.0 s
to 10.0 s with 30 trials per class per setting. Performance improves
monotonically from 75.0% at 1.0 s to 100% at 10.0 s, with a marked
inflection between 5.0 s (85.0%) and 7.0 s (98.3%).

This trend is expected for both analysis modules. For spectral
forensics, the frequency resolution of the FFT is Af = 1/T, so longer
trajectories provide finer frequency resolution that better separates
the tremor peak from adjacent bands. At T = 15, Af = 1 Hz, mak-
ing it difficult to distinguish 8 Hz tremor from broadband noise;
at T =10s, Af = 0.1 Hz provides precise tremor localization. For
submovement decomposition, longer trajectories contain more sub-
movements (typically 2-5 per reaching phase of 1-2 s), providing
more data points for the greedy fitting algorithm and more reliable
R? estimates. The practical implication is that verification is most re-
liable for demonstrations of 5 seconds or longer, which fortunately
encompasses most manipulation tasks of interest.

5 DISCUSSION
5.1 Why Multi-Scale Analysis is Necessary

Our results demonstrate that human motor control produces dis-
tinctive signatures at multiple temporal scales simultaneously. The
spectral module captures the macro-scale bandwidth constraint and
the involuntary tremor rhythm, while the submovement module
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captures the meso-scale temporal structure of discrete motor cor-
rections. These signatures are largely independent: a trajectory can
have the correct spectral profile but wrong submovement structure
(e.g., if an adversary adds synthetic tremor but uses non-biological
velocity profiles), or vice versa (e.g., a policy trained on human
data that inherits smooth velocity profiles but lacks tremor). By
requiring consistency across both scales, the combined pipeline is
more robust to partial spoofing.

The AUC improvement from combining modules (1.000 vs. 0.994
and 0.985 individually) quantifies this complementarity. While each
module is individually near-perfect, the residual error cases differ:
the spectral module misses some transformer policy trajectories
with little high-frequency content, while the submovement module
occasionally misses diffusion policy trajectories whose chunking
pattern accidentally resembles bell-shaped velocity profiles. Their
combination covers these edge cases.

5.2 The Role of Watermarking

The watermark module serves a fundamentally different purpose
than the forensic modules. Spectral and submovement analysis
provide passive verification that works on any trajectory without
cooperation from the policy developer. Watermarking provides ac-
tive verification with cryptographic guarantees, but requires the
policy developer to embed the watermark during training or infer-
ence.

In a deployment scenario, the recommended strategy is layered:
use passive forensics as a first screening for all trajectories, and
supplement with watermark verification for policies from cooper-
ative developers who have registered their watermark keys. This
layered approach provides defense-in-depth: even if an adversary
learns to evade the forensic modules, the watermark provides an
independent verification channel.

5.3 Limitations and Future Directions

Our evaluation uses synthetic trajectories that model the primary
signatures of human and autonomous control. While the generators
are grounded in established motor control models and policy ar-
chitecture characteristics, real-world trajectories exhibit additional
complexity:

e Device diversity: Different teleoperation interfaces (Space-
Mouse, VR controllers, bilateral arms) introduce device-
specific filtering and quantization that may attenuate some
human signatures. Future work should evaluate with real
multi-device data.

o Imitation learning policies: Policies trained via behav-
ioral cloning on human demonstrations may partially in-
herit submovement structure. Our greedy fitter may pro-
duce moderate R? values for such policies, potentially re-
ducing the submovement module’s discriminative power.

e Hybrid operation: Some systems use shared autonomy
where a human teleoperates during critical phases while the
policy controls other phases. Detecting these mixed-source
trajectories requires segment-level analysis.
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e Adversarial robustness: An adversary aware of our fea-
ture set could inject synthetic tremor and smooth veloc-
ity profiles into autonomous trajectories. While simultane-
ously forging all multi-scale features is difficult, a formal
adversarial robustness analysis is needed.

e Variable-rate systems: Some policies execute at variable
rates or use event-triggered control, requiring adaptation
of the spectral analysis to non-uniform sampling.

6 CONCLUSION

We have presented a multi-scale trajectory forensics framework for
verifying the source authenticity of robotic manipulation demon-
strations. By combining spectral forensics, minimum-jerk submove-
ment decomposition, and cryptographic watermarking, our pipeline
achieves 86% classification accuracy and 1.000 composite AUC on
synthetic benchmarks, with 100% precision for the autonomous
classification label.

Our results confirm the central hypothesis that human motor
control leaves multi-scale statistical fingerprints—bandwidth lim-
itations, physiological tremor, and minimum-jerk submovement
structure—that are jointly difficult to forge. The spectral and sub-
movement modules each achieve near-perfect AUC independently
(0.994 and 0.985), demonstrating that passive forensic analysis can
provide strong source discrimination without requiring policy co-
operation. Classification accuracy improves monotonically with
trajectory duration, reaching 100% at 10 seconds, confirming that
longer trajectories provide richer forensic evidence.

The watermark module provides a complementary active verifi-
cation channel with zero false positives, suitable for cooperative
evaluation scenarios where policy developers embed provenance
signatures. Together, the passive and active verification channels
provide a principled foundation for establishing trajectory prove-
nance in robotic manipulation benchmarks, supporting fair evalua-
tion and protecting against manipulation.

Broader impact. Reliable trajectory source verification is essen-
tial for trustworthy evaluation of robotic manipulation systems. As
the field moves toward standardized benchmarks and reproducible
comparisons, the ability to verify that reported demonstrations were
actually generated by the claimed autonomous policy becomes crit-
ical. Our framework provides both the theoretical grounding and
practical tools for this verification, contributing to the integrity of
the robotic manipulation research ecosystem.
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