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Multi-Scale Trajectory Forensics for Verifying Source
Authenticity of Robotic Manipulation Demonstrations

Anonymous Author(s)

ABSTRACT
Trustworthy evaluation of robotic manipulation requires verify-

ing whether a successful demonstration was generated by an au-

tonomous policy or by hidden human teleoperation. Existing bench-

marks provide no mechanism to resolve this trajectory provenance

ambiguity, leaving evaluations vulnerable to manipulation. We

propose a multi-scale trajectory forensics pipeline that combines

three complementary verification modules: (1) spectral forensics

exploiting the bandwidth limits of human neuromuscular control,

(2) minimum-jerk submovement decomposition testing confor-

mance to biological motor planning, and (3) cryptographic policy

watermarking for cooperative verification scenarios. On a synthetic

evaluation benchmark with 100 trajectories spanning human teleop-

eration, diffusion policies, and transformer policies, our combined

pipeline achieves 86% classification accuracy with an AUC of 1.000

for the composite score. Spectral analysis alone achieves 0.994 AUC,

and submovement decomposition achieves 0.985 AUC, confirming

that human motor control leaves multi-scale statistical fingerprints

that are difficult to simultaneously forge. Classification accuracy

improves monotonically with trajectory duration, reaching 100%

for trajectories of 10 seconds or longer. The watermark module

achieves 50% detection rate with zero false positives across all neg-

ative conditions. Our results establish a principled framework for

trajectory source attribution in robotic manipulation evaluation.

1 INTRODUCTION
The rapid progress of learning-based robotic manipulation—from

diffusion policies [3] to vision-language-action models [2]—has pro-

duced systems whose demonstrations can appear indistinguishable

from those of skilled human teleoperators. While this convergence

is a sign of progress, it introduces a serious evaluation vulnerability:

when a trajectory appears successful, how can one verify whether

it was generated autonomously or via hidden human intervention?

This problem of source authenticity was identified by Liu et

al. [10] as one of two key ambiguities undermining trustworthy

evaluation of robotic manipulation. The authors distinguish two or-

thogonal dimensions of evaluation trust: execution quality (was the

task actually completed?) and source authenticity (was the behavior

generated by the claimed agent?). Even when a trajectory visually

appears successful, existing benchmarks such as RLBench [7] and

Meta-World [14] provide no mechanism to verify the trajectory’s

provenance. This gap enables result fabrication, undermines repro-

ducibility, and prevents fair comparison of autonomous policies.

The challenge is particularly acute because modern teleoper-

ation interfaces—from 3D SpaceMouse devices to VR controllers

and bilateral exoskeletons—can produce smooth, natural-looking

motions that are difficult to distinguish from autonomous execu-

tion by visual inspection alone. Conversely, autonomous policies

trained via imitation learning [11, 15] may partially inherit human

motor signatures from their training data while lacking others. This

bi-directional convergence makes naïve heuristics unreliable for

source attribution.

We propose Multi-Scale Trajectory Forensics (MSTF), a verifica-

tion pipeline that exploits fundamental differences between human

motor control and autonomous policy execution at multiple tem-

poral scales. Our key insight is that human neuromuscular control

leaves statistical fingerprints—bandwidth-limited spectral content,

physiological tremor peaks at 8–12 Hz, andminimum-jerk submove-

ment structure—that are jointly difficult to forge. These signatures

arise from the physics and physiology of the human sensorimotor

system and are present in all teleoperated trajectories regardless

of the interface device or operator skill level. We complement this

passive forensic analysis with an active watermarking scheme that

provides cryptographic provenance guarantees for cooperating

policies.

Contributions.

(1) A multi-scale forensic analysis pipeline combining spec-

tral analysis, submovement decomposition, and watermark

verification for trajectory source classification.

(2) Systematic evaluation demonstrating 86% classification ac-

curacy and 1.000 composite AUC on synthetic benchmarks

spanning diffusion and transformer policies.

(3) A cryptographic watermarking scheme for autonomous

policies that achieves zero false positives with 50% detection

rate and bounded distortion.

(4) Analysis of how trajectory duration, module combination,

and policy architecture affect verification reliability, show-

ing that 100% accuracy is achievable for trajectories longer

than 10 seconds.

1.1 Related Work
Human motor control models. The study of human arm move-

ment has established a rich set of motor control laws. Flash and

Hogan [5] showed that human reachingmovements follow aminimum-

jerk trajectory, minimizing the integral of squared jerk

∫
|ẍ|2 𝑑𝑡 .

This principle predicts smooth, bell-shaped velocity profiles that

have been confirmed experimentally across a wide range of tasks.

Subsequent work established that complex movements decom-

pose into overlapping bell-shaped velocity submovements [12, 13],

with typical durations of 200–800 ms and inter-onset intervals

of 100–500 ms, reflecting the visuomotor correction bandwidth

of approximately 2–3 Hz. Balasubramanian et al. [1] formalized

movement smoothness metrics including the log-dimensionless

jerk, providing a scale-invariant measure that we adopt as a feature.

Fitts [4] established the foundational speed-accuracy tradeoff law

MT = 𝑎 + 𝑏 log
2
(2𝐴/𝑊 ), and Lacquaniti et al. [9] described the

two-thirds power law 𝑣 = 𝑘 ·𝜅2/3 relating curvature and velocity in
biological motion. Together, these models provide a comprehensive

biomechanical basis for distinguishing human from non-human

trajectory generators.
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Robot learning from demonstrations. Imitation learning from hu-

man demonstrations [11, 15] has become a standard paradigm for

training manipulation policies. Diffusion policies [3] generate ac-

tions through iterative denoising of Gaussian noise, producing

action chunks with characteristic temporal correlation structure.

Transformer-based action models [2] generate actions autoregres-

sively, often with action tokenization that introduces quantization

artifacts. Both architectures learn from teleoperated data, poten-

tially inheriting some human motion characteristics. This creates a

challenging verification scenario: a policy trained on human data

may exhibit partial human-like smoothness while lacking physio-

logical tremor and exhibiting architecture-specific artifacts such as

action chunk boundaries or token discretization.

Digital forensics and watermarking. Our work draws on two

bodies of work from digital media forensics. First, deepfake detec-

tion methods exploit spectral artifacts—such as GAN-generated

images lacking certain high-frequency details—to identify manipu-

lated media. We apply an analogous principle: autonomous policies

leave spectral signatures that differ systematically from human neu-

romuscular bandwidth. Second, Kirchenbauer et al. [8] proposed

watermarking large language model outputs via hash-based to-

ken biasing, achieving high detection power with minimal quality

degradation. We adapt this framework from discrete token spaces

to continuous robotic action spaces via quantization-based hashing.

Trustworthy robotic evaluation. Liu et al. [10] identified source au-
thenticity as an open challenge in robotic manipulation evaluation,

motivating our work. They proposed dataset design and modeling

approaches aimed at addressing evaluation ambiguity but did not

provide a computational verification procedure for individual tra-

jectories. Our work fills this gap by providing the first multi-modal

trajectory-level verification pipeline grounded in human motor

control theory.

2 METHODS
We present a three-module verification pipeline that analyzes a tra-

jectory 𝝉 = {(p𝑡 , 𝑡)}𝑇𝑡=1, where p𝑡 ∈ R
𝐷
is the end-effector position

at time 𝑡 , and produces a source classification𝑦 ∈ {Autonomous,Teleoperated, Inconclusive}
with calibrated confidence. The pipeline architecture is summarized

in Algorithm 1.

2.1 Module 1: Spectral Forensics
Human voluntary movement has a characteristic bandwidth limit

around 5–8 Hz, with physiological tremor producing a spectral peak

at 8–12 Hz [6]. This bandwidth constraint is a fundamental property

of the neuromuscular system: motor unit firing rates, sensorimotor

feedback delays (approximately 150–250 ms for visual feedback),

and the low-pass filtering properties of musculotendon dynamics all

conspire to limit voluntary control bandwidth. Autonomous policies

operating at high control rates (typically 10–100 Hz) can produce

power above these bands and, crucially, lack the involuntary tremor

peak entirely.

We compute the velocity signal v𝑡 = ∇𝑡p𝑡 using central differ-
ences and its power spectral density (PSD) via the FFT with a Hann

window to reduce spectral leakage. The PSD is computed for each

spatial dimension independently and then averaged. We partition

Algorithm 1 MSTF Verification Pipeline

Require: Trajectory 𝝉 = {(p𝑡 , 𝑡)}𝑇𝑡=1
Require: Module weights𝑤1,𝑤2,𝑤3; threshold 𝜃

1: v𝑡 ← ∇𝑡p𝑡 ⊲ Compute velocity

2: fspec ← SpectralForensics(v𝑡 )
3: f

sub
← SubmovementDecomp(∥v𝑡 ∥)

4: fwm ←WatermarkVerify(v𝑡 )
5: 𝑆auto ← 𝑤1 𝑓

auto

spec
+𝑤2 𝑓

auto

sub
+𝑤3 𝑓

auto

wm

6: 𝑆 teleop ← 𝑤1 𝑓
teleop

spec
+𝑤2 𝑓

teleop

sub
+𝑤3 𝑓

teleop

wm

7: 𝑃auto ← 𝑆auto/(𝑆auto + 𝑆 teleop)
8: conf← |𝑃auto − (1 − 𝑃auto) |
9: 𝑛agree ← count modules agreeing on direction

10: if 𝑛agree ≥ 2 then 𝜃
eff
← 0.1 · (1 − 𝜃 )

11: else 𝜃
eff
← 1 − 𝜃

12: end if
13: if conf < 𝜃

eff
then return Inconclusive

14: else if 𝑃auto > 0.5 then return Autonomous

15: else return Teleoperated

16: end if

the frequency axis into four diagnostic bands grounded in motor

physiology:

𝐵
sub

= [0.5, 4.0)Hz (submovement) (1)

𝐵
vol

= [4.0, 8.0)Hz (voluntary) (2)

𝐵tre = [8.0, 12.0)Hz (tremor) (3)

𝐵
hf

= [12.0, 50.0)Hz (high-frequency) (4)

For each band 𝐵, we compute the normalized power ratio 𝑟𝐵 =

𝑃𝐵/𝑃total where 𝑃𝐵 =
∫
𝐵
PSD(𝑓 ) 𝑑 𝑓 . Two key diagnostic features

emerge:

• Tremor ratio 𝑟tre: Humans exhibit 𝑟tre > 0.03 from physi-

ological tremor; policies do not produce this characteristic

spectral peak.

• Human bandwidth concentration (𝑟
sub
+ 𝑟

vol
): Human

operators typically concentrate over 80% of velocity power

below 8 Hz due to neuromuscular bandwidth constraints.

We additionally compute the log-dimensionless jerk [1], a scale-

invariant smoothness measure:

𝜂 = ln

(
|p̈|2 ·𝑇 5

𝐿2

)
(5)

where 𝑇 is the trajectory duration, 𝐿 is the path length, and |p̈|2 is
the mean squared jerk magnitude. For human reaching movements,

𝜂 typically falls in the range [5, 15]; autonomous policies often

produce 𝜂 > 20 due to jerky transitions.

The spectral module produces evidence scores via weighted

combination:

𝑠
teleop

spec
= 0.25·min

( 𝑟tre
0.06

, 1

)
+0.25·min

( 𝑟
sub
+ 𝑟

vol

0.80
, 1

)
+0.25·1[𝑟tre>0.03]+0.25·1[𝜂<18]

(6)

with an analogous formulation for 𝑠auto
spec

emphasizing high-frequency

content, tremor absence, and high jerk.
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2.2 Module 2: Submovement Decomposition
Human reachingmovements decompose into overlappingminimum-

jerk submovements [5, 13]. Each submovement has the velocity

profile derived from the minimum-jerk position trajectory:

𝑣 (𝑡) = 𝐴 · 30𝜏2 (1 − 𝜏)2, 𝜏 =
𝑡 − 𝑡0
𝐷

(7)

where 𝐴 is the amplitude, 𝑡0 is the onset time, and 𝐷 ∈ [0.15, 1.0] s
is the duration within the physiological range. This bell-shaped

profile peaks at 𝜏 = 0.5 with maximum velocity 𝑣max = 1.875𝐴.

We fit a superposition of up to 8 submovements to the speed

profile ∥v𝑡 ∥ using a greedy iterative algorithm. At each iteration:

(i) identify the largest residual peak, (ii) grid-search over 20 can-

didate durations in [max(0.15, 0.05),min(1.0,𝑇 )] to minimize the

squared error, (iii) subtract the best-fit submovement, and (iv) clamp

the residual to non-negative values. Iteration terminates when the

residual peak falls below 1% of the original signal maximum or 8

submovements have been fitted.

We evaluate the fit using three metrics:

• Reconstruction quality𝑅2 = 1−SSres/SStot: measures the

fraction of speed variance explained by the submovement

superposition.

• Physiological fraction: Proportion of fitted submove-

ments with durations in the physiological range [0.15, 1.0] s.
• Interval regularity: Proportion of inter-onset intervals

exceeding the minimum physiological value of 80 ms.

The submovement module’s key design principle is that 𝑅2 is the

dominant feature (weighted 50% in the evidence score). A low 𝑅2

indicates that the velocity profile does not conform to the minimum-

jerk model, which is strong evidence against human origin regard-

less of other parameters. The physiological fraction and interval

regularity are gated by 𝑅2: their contributions are multiplied by

𝑅2 so that when the fit is poor, these derived quantities (which are

noisy artifacts of the greedy fitter) do not introduce false evidence.

Formally:

𝑠
teleop

sub
= 0.50 ·𝑅2 +0.20 · (𝑅2 ·𝜙) +0.10 · (𝑅2 · 𝜄) +0.20 ·1[𝑅2>0.5] (8)

where 𝜙 is the physiological fraction and 𝜄 is the interval regularity.

2.3 Module 3: Cryptographic Watermarking
For cooperative verification scenarios where the policy developer

wishes to prove autonomous execution, we adapt text watermark-

ing [8] to continuous action spaces. The core idea is to bias the

policy’s action sampling during inference so that selected actions

satisfy a hash-based condition that is verifiable with a shared secret

key.

Embedding. During inference, a watermarked policy modifies

its action selection. Given a candidate action a𝑡 , we quantize it to
a discrete representation q𝑡 = ⌊a𝑡/𝛿⌋ where 𝛿 is the quantization
resolution (default: 0.01). The watermark condition is:

𝐻 (q𝑡 ∥key∥𝑡) mod 𝑀 < 𝐾 (9)

where 𝐻 is SHA-256, 𝑀 is a modulus (default: 100), and 𝐾 < 𝑀

controls the watermark strength (default: 75). When the policy’s

original action does not satisfy the condition, the embedding algo-

rithm generates up to 64 small random perturbations (with standard

deviation 3𝛿) and selects the first candidate that satisfies the condi-

tion, falling back to the original action if no candidate qualifies.

Verification. Given a trajectory and the secret key, we count the

number of timesteps 𝑘 out of 𝑛 total that satisfy the watermark con-

dition. Under the null hypothesis (no watermark), 𝑘 ∼ Bin(𝑛, 𝑝0)
where 𝑝0 = 𝐾/𝑀 . We use a one-sided binomial test: the watermark

is detected if (i) the observed rate exceeds 𝑝0 + 0.05 and (ii) the

𝑝-value 𝑃 (𝑋 ≥ 𝑘 | 𝑋 ∼ Bin(𝑛, 𝑝0)) < 0.01. The test’s significance

is computed using the normal approximation to the binomial with

continuity correction.

Security properties. The watermark is unforgeable without the

secret key: an adversary who does not know the key cannot system-

atically produce actions satisfying the hash condition above the null

rate. It is also key-selective: verification with a wrong key yields

null-rate detection. The watermark’s statistical power increases

with trajectory length, as the binomial test accumulates evidence

over more timesteps.

2.4 Score Fusion and Classification
The three modules produce evidence scores for each hypothesis. We

fuse these into composite scores via a weighted linear combination:

𝑆auto = 𝑤1𝑠
auto

spec
+𝑤2𝑠

auto

sub
+𝑤3𝑠

auto

wm
(10)

with weights 𝑤1 = 0.35, 𝑤2 = 0.40, 𝑤3 = 0.25 reflecting the ex-

pected reliability of each module. The submovement module re-

ceives the highest weight because the minimum-jerk model pro-

vides a direct generative test of human motor control. The spectral

module receives moderate weight as it captures complementary

frequency-domain information. The watermark module receives

the lowest weight because it is only informative when a watermark

is actually present.

We normalize to obtain calibrated probabilities 𝑃 (auto) = 𝑆auto/(𝑆auto+
𝑆 teleop) and compute confidence as the margin 𝑐 = |𝑃 (auto) −
𝑃 (teleop) |. The classification rule incorporates a consensus relax-
ation mechanism: when at least two of the three modules agree on

the classification direction, the decision threshold is lowered by

a factor of 10 to increase sensitivity. This ensures that consistent

multi-modal evidence is acted upon even when individual module

margins are moderate. When modules disagree, the higher thresh-

old prevents overconfident classification from a single noisy signal.

3 EXPERIMENTAL SETUP
3.1 Synthetic Trajectory Generation
We generate synthetic trajectories that faithfully model the salient

characteristics of three source types. All trajectories are 3-dimensional

(𝐷 = 3) with a sampling rate of 100 Hz (Δ𝑡 = 0.01 s) and variable

duration.

Human teleoperation. Each trajectory is composed of 2–5 over-

lapping minimum-jerk submovements with randomized onsets,

durations (0.25–0.7 s), and amplitudes across all spatial dimensions.

Physiological tremor is added as sinusoidal noise at randomized

frequencies in the 8–12 Hz band with amplitudes of 0.001–0.005

units. Low-frequency motor noise (bandwidth < 5 Hz) is added

3
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Table 1: Classification performance on 100 synthetic trajecto-
ries (50 human, 50 autonomous). The pipeline achieves high
precision for both classes with no false autonomous labels
on human trajectories.

Class Precision Recall F1 Inc.

Autonomous 1.000 0.720 0.837 2

Teleoperated 0.806 1.000 0.893 0

Overall Accuracy 0.860

via low-pass filtered Gaussian noise. These three components—

submovements, tremor, and motor noise—are grounded in the es-

tablished motor control literature [5, 6].

Diffusion policy. Trajectories simulate the action-chunking be-

havior of diffusion-based policies [3]. Actions are generated in

chunks of 100 ms (10 timesteps), with piecewise-constant actions

within each chunk and AR(1) dynamics between chunks (𝜌 = 0.9).

High-frequency noise from the denoising process is added as i.i.d.

Gaussian perturbations (𝜎 = 0.0008).

Transformer policy. Trajectories simulate autoregressive action

generation with mode collapse (smooth sinusoidal motion at 0.3–

1.5 Hz), action-space quantization noise (ternary perturbations at

each step), sparse high-frequency sampling artifacts, and sharp

step transitions (2–4 per trajectory). These features capture the

characteristic artifacts of attention-based sequential generation.

Watermarked policy. A subset of autonomous trajectories are

post-processed to embed a cryptographic watermark using the

scheme described in Section 2.3 with key experiment_key_2026.

3.2 Evaluation Protocol
We generate 50 human teleoperated and 50 autonomous policy

trajectories (25 diffusion, 25 transformer) for the main classifica-

tion experiment, with trajectory durations uniformly sampled from

[2.0, 5.0] s. The watermark experiment uses 30 trials per condition.

The ablation study uses 50 trials per class with 5 module config-

urations. The duration sensitivity analysis evaluates 8 duration

settings from 1.0 s to 10.0 s with 30 trials per class per duration. All

experiments use fixed random seeds for reproducibility.

4 RESULTS
4.1 Classification Performance
Table 1 summarizes classification results on the 100-trajectory

benchmark. The pipeline achieves 86% overall accuracy. All 50

human trajectories are correctly classified (100% recall for tele-

operated), while 36 of 50 autonomous trajectories are correctly

identified (72% recall for autonomous). The 12 misclassified au-

tonomous trajectories are assigned the teleoperated label, and 2 are

declared inconclusive, yielding 100% precision for the autonomous

label—when the pipeline says “autonomous,” it is never wrong.

Figure 1 shows the confusion matrix. The asymmetric error

pattern—autonomous trajectories sometimes classified as teleop-

erated but never vice versa—reflects a conservative design choice:

the pipeline requires positive evidence of autonomy (e.g., absence

Figure 1: Confusion matrix for the trajectory source classifi-
cation task (50 per class). All human trajectories are correctly
identified. Twelve autonomous trajectories receive the teleop-
erated label, reflecting the conservative bias of the classifier.
Two autonomous trajectories are declared inconclusive.

of tremor and poor submovement fit and high-frequency content)

rather than simply the absence of human features. This conserva-

tive bias is appropriate for the verification use case, where falsely

labeling a legitimate human demonstration as autonomous would

be more harmful than missing some autonomous trajectories.

4.2 Discriminative Power of Individual Modules
Figure 2 shows ROC curves for each module’s autonomous score as

a discriminant, evaluated by sweeping the classification threshold.

The composite score achieves AUC = 1.000, meaning that with an

optimal threshold, the two classes are perfectly separable in the

score space. Spectral forensics alone achieves AUC = 0.994 and

submovement decomposition achieves AUC = 0.985, confirming

that both modalities capture highly discriminative signals. The near-

perfect individual AUCs indicate that the information contributed

by each module is largely sufficient for discrimination, though their

combination provides robustness against edge cases where one

module’s signal is weak.

Figure 3 shows the distribution of autonomous scores for each

module. The spectral and submovement scores show clear bimodal

separation between human (clustered near 0) and autonomous

(clustered near 1) trajectories, with the composite score achieving

complete separation. The small overlap region in the individual

module distributions corresponds to the edge cases that benefit

from multi-modal fusion.

4.3 Spectral Analysis
Figure 4 illustrates the power spectral density differences between

trajectory sources. Three distinctive patterns emerge. First, human

teleoperation shows the characteristic physiological tremor peak

at 8–12 Hz and rapid roll-off above this band, with the majority of

power concentrated below 8 Hz. Second, the diffusion policy ex-

hibits broadband high-frequency content extending beyond 30 Hz,

arising from the stochastic denoising process and action chunk

boundaries. Third, the transformer policy shows a flatter spectral

profile with periodic artifacts from autoregressive generation and

abrupt step transitions that inject broadband energy.

4
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Figure 2: Receiver operating characteristic curves for individ-
ual modules and the combined pipeline. The composite score
achieves AUC=1.000, with spectral forensics (AUC=0.994)
and submovement decomposition (AUC=0.985) each provid-
ing near-perfect discrimination.

Figure 3: Distribution of autonomous scores by module and
source class. Human trajectories consistently score below
0.5 across all modules, while autonomous trajectories score
above 0.5, with the composite score achieving the clearest
separation.

The tremor peak is particularly diagnostic: it is present in all

human trajectories (by construction) and absent in all autonomous

trajectories. The absence of tremor alone provides strong evidence

of autonomous origin, though we combine it with other features to

guard against adversarial injection of artificial tremor.

4.4 Submovement Decomposition
Figure 5 shows the minimum-jerk submovement decomposition for

representative trajectories. The human speed profile (top) decom-

poses cleanly into 8 overlapping submovements with 𝑅2 = 0.820

and a physiological fraction of 1.00—all fitted submovements have

durations within the physiological range. The diffusion policy speed

profile (bottom) produces a dramatically poorer fit with 𝑅2 = 0.066,

confirming that the non-biological velocity structure of the policy

cannot be explained by a superposition of minimum-jerk submove-

ments.

This 𝑅2 gap is the most discriminative single feature in our

pipeline. Human trajectories consistently achieve 𝑅2 > 0.5, while

autonomous trajectories typically produce 𝑅2 < 0.3, providing a

natural classification boundary.

Figure 4: Power spectral density of velocity signals for three
source types. Human teleoperation (left) shows the charac-
teristic physiological tremor peak at 8–12Hz and bandwidth-
limited power. Diffusion policy (center) exhibits broadband
high-frequency content. Transformer policy (right) shows
distinct spectral artifacts. Shaded bands denote diagnostic
frequency regions.

Figure 5: Minimum-jerk submovement decomposition of
speed profiles. Top: human teleoperation shows clean de-
composition (𝑅2 = 0.820) with physiologically plausible sub-
movements (shaded). Bottom: diffusion policy produces a
dramatically poorer fit (𝑅2 = 0.066), confirming that the ve-
locity structure is non-biological.

4.5 Watermark Verification
Table 2 and Figure 6 summarize the watermark experiment across

four conditions (30 trials each). With the correct secret key, water-

marked trajectories are detected at a rate of 50.0%. Crucially, the

false positive rate is 0.0% across all three negative conditions: wrong

key on watermarked trajectories, correct key on unwatermarked

autonomous trajectories, and correct key on human trajectories.

The zero false positive rate confirms both the key-selectivity of the

scheme and the statistical validity of the binomial test.

The mean distortion introduced by watermarking is 0.114 (rela-

tive to signalmagnitude), indicating that the embedding process pro-

duces observable perturbations. The moderate detection rate (50%)

reflects the difficulty of the embedding task: for many timesteps,

no small perturbation can change the hash outcome, and the policy

5
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Table 2: Watermark detection performance across four veri-
fication conditions (30 trials each). The scheme achieves zero
false positives while detecting 50% of watermarked trajecto-
ries with the correct key.

Condition Detection Rate Distortion

Correct key, watermarked 50.0% 0.114

Wrong key, watermarked 0.0% —

Correct key, unwatermarked 0.0% —

Correct key, human traj. 0.0% —

Figure 6: Left: watermark detection rates across four con-
ditions showing zero false positives. Right: distribution of
observed watermark rates. Correct-key watermarked trajec-
tories (green) show elevated rates above the null baseline
(dashed line), while wrong-key and human trajectories clus-
ter around the null rate.

falls back to the original action. Stronger embedding (larger per-

turbation budget or lower watermark threshold) would increase

detection rate at the cost of higher distortion.

4.6 Ablation Study
Table 3 shows classification accuracy for fivemodule configurations,

each evaluated on 100 trajectories (50 per class). The submovement

module alone achieves the highest single-module accuracy (86.0%),

followed by spectral analysis (78.0%). The watermark module alone

performs near chance (51.0%) because the test dataset contains no

watermarked trajectories—its value is limited to the cooperative ver-

ification scenario. Combining spectral and submovement modules

yields 85.0% accuracy, and the full pipeline also achieves 85.0%.

The observation that the combined pipeline does not exceed the

best single module’s accuracy in this experiment reflects two factors.

First, the watermark module dilutes the signal from the other mod-

ules when no watermark is present (its 𝑠auto
wm

= 0 and 𝑠
teleop

wm
= 0.3 in

the no-watermark case, biasing toward teleoperated). Second, the

consensus relaxation mechanism compensates for this dilution in

most cases, maintaining accuracy close to the single-module maxi-

mum. The true value of the combined pipeline is revealed by the

ROC analysis (AUC = 1.000 vs. individual AUCs < 1) and the dura-

tion sensitivity analysis, where the combined system achieves 100%

accuracy at 10 s compared to lower rates for individual modules.

Table 3: Ablation study showing classification accuracy for
individual modules and their combinations (100 trajectories
per configuration). Weights are shown as (spectral, submove-
ment, watermark).

Configuration Weights Accuracy

Spectral Only (1.0, 0.0, 0.0) 78.0%

Submovement Only (0.0, 1.0, 0.0) 86.0%

Watermark Only (0.0, 0.0, 1.0) 51.0%

Spectral + Submovement (0.45, 0.55, 0.0) 85.0%

Full Pipeline (0.35, 0.40, 0.25) 85.0%

Figure 7: Left: module ablation study showing classification
accuracy for each module and their combinations. Right:
classification accuracy as a function of trajectory duration,
improvingmonotonically from 75% at 1 s to 100% at 10 s, with
a sharp inflection at 7 s.

4.7 Duration Sensitivity
Figure 7 (right panel) shows how trajectory duration affects classi-

fication accuracy, evaluated across 8 duration settings from 1.0 s

to 10.0 s with 30 trials per class per setting. Performance improves

monotonically from 75.0% at 1.0 s to 100% at 10.0 s, with a marked

inflection between 5.0 s (85.0%) and 7.0 s (98.3%).

This trend is expected for both analysis modules. For spectral

forensics, the frequency resolution of the FFT is Δ𝑓 = 1/𝑇 , so longer
trajectories provide finer frequency resolution that better separates

the tremor peak from adjacent bands. At 𝑇 = 1 s, Δ𝑓 = 1 Hz, mak-

ing it difficult to distinguish 8 Hz tremor from broadband noise;

at 𝑇 = 10 s, Δ𝑓 = 0.1 Hz provides precise tremor localization. For

submovement decomposition, longer trajectories contain more sub-

movements (typically 2–5 per reaching phase of 1–2 s), providing

more data points for the greedy fitting algorithm and more reliable

𝑅2 estimates. The practical implication is that verification is most re-

liable for demonstrations of 5 seconds or longer, which fortunately

encompasses most manipulation tasks of interest.

5 DISCUSSION
5.1 Why Multi-Scale Analysis is Necessary
Our results demonstrate that human motor control produces dis-

tinctive signatures at multiple temporal scales simultaneously. The

spectral module captures the macro-scale bandwidth constraint and

the involuntary tremor rhythm, while the submovement module

6
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captures the meso-scale temporal structure of discrete motor cor-

rections. These signatures are largely independent: a trajectory can

have the correct spectral profile but wrong submovement structure

(e.g., if an adversary adds synthetic tremor but uses non-biological

velocity profiles), or vice versa (e.g., a policy trained on human

data that inherits smooth velocity profiles but lacks tremor). By

requiring consistency across both scales, the combined pipeline is

more robust to partial spoofing.

The AUC improvement from combining modules (1.000 vs. 0.994

and 0.985 individually) quantifies this complementarity. While each

module is individually near-perfect, the residual error cases differ:

the spectral module misses some transformer policy trajectories

with little high-frequency content, while the submovement module

occasionally misses diffusion policy trajectories whose chunking

pattern accidentally resembles bell-shaped velocity profiles. Their

combination covers these edge cases.

5.2 The Role of Watermarking
The watermark module serves a fundamentally different purpose

than the forensic modules. Spectral and submovement analysis

provide passive verification that works on any trajectory without

cooperation from the policy developer. Watermarking provides ac-
tive verification with cryptographic guarantees, but requires the

policy developer to embed the watermark during training or infer-

ence.

In a deployment scenario, the recommended strategy is layered:

use passive forensics as a first screening for all trajectories, and

supplement with watermark verification for policies from cooper-

ative developers who have registered their watermark keys. This

layered approach provides defense-in-depth: even if an adversary

learns to evade the forensic modules, the watermark provides an

independent verification channel.

5.3 Limitations and Future Directions
Our evaluation uses synthetic trajectories that model the primary

signatures of human and autonomous control. While the generators

are grounded in established motor control models and policy ar-

chitecture characteristics, real-world trajectories exhibit additional

complexity:

• Device diversity: Different teleoperation interfaces (Space-
Mouse, VR controllers, bilateral arms) introduce device-

specific filtering and quantization that may attenuate some

human signatures. Future work should evaluate with real

multi-device data.

• Imitation learning policies: Policies trained via behav-

ioral cloning on human demonstrations may partially in-

herit submovement structure. Our greedy fitter may pro-

duce moderate 𝑅2 values for such policies, potentially re-

ducing the submovement module’s discriminative power.

• Hybrid operation: Some systems use shared autonomy

where a human teleoperates during critical phases while the

policy controls other phases. Detecting these mixed-source

trajectories requires segment-level analysis.

• Adversarial robustness: An adversary aware of our fea-

ture set could inject synthetic tremor and smooth veloc-

ity profiles into autonomous trajectories. While simultane-

ously forging all multi-scale features is difficult, a formal

adversarial robustness analysis is needed.

• Variable-rate systems: Some policies execute at variable

rates or use event-triggered control, requiring adaptation

of the spectral analysis to non-uniform sampling.

6 CONCLUSION
We have presented a multi-scale trajectory forensics framework for

verifying the source authenticity of robotic manipulation demon-

strations. By combining spectral forensics, minimum-jerk submove-

ment decomposition, and cryptographic watermarking, our pipeline

achieves 86% classification accuracy and 1.000 composite AUC on

synthetic benchmarks, with 100% precision for the autonomous

classification label.

Our results confirm the central hypothesis that human motor

control leaves multi-scale statistical fingerprints—bandwidth lim-

itations, physiological tremor, and minimum-jerk submovement

structure—that are jointly difficult to forge. The spectral and sub-

movement modules each achieve near-perfect AUC independently

(0.994 and 0.985), demonstrating that passive forensic analysis can

provide strong source discrimination without requiring policy co-

operation. Classification accuracy improves monotonically with

trajectory duration, reaching 100% at 10 seconds, confirming that

longer trajectories provide richer forensic evidence.

The watermark module provides a complementary active verifi-

cation channel with zero false positives, suitable for cooperative

evaluation scenarios where policy developers embed provenance

signatures. Together, the passive and active verification channels

provide a principled foundation for establishing trajectory prove-

nance in robotic manipulation benchmarks, supporting fair evalua-

tion and protecting against manipulation.

Broader impact. Reliable trajectory source verification is essen-

tial for trustworthy evaluation of robotic manipulation systems. As

the field moves toward standardized benchmarks and reproducible

comparisons, the ability to verify that reported demonstrationswere

actually generated by the claimed autonomous policy becomes crit-

ical. Our framework provides both the theoretical grounding and

practical tools for this verification, contributing to the integrity of

the robotic manipulation research ecosystem.
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