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ABSTRACT

Generative speech enhancement (GSE) models such as Miipher
have demonstrated effectiveness for curating text-to-speech train-
ing data from controlled corpora like LibriTTS. However, their
performance on truly in-the-wild data—characterized by diverse
noise types, variable recording quality, and unpredictable speaker
characteristics—remains uncertain. We present a Monte Carlo sim-
ulation framework that evaluates three enhancement approaches
(baseline signal processing, discriminative neural enhancement,
and generative token-based enhancement) across three dataset con-
ditions (curated, semi-wild, and in-the-wild) with 1,000 samples
each. Our results show that GSE achieves a PESQ improvement of
+0.21 on curated data but only +0.46 on in-the-wild data, while the
hallucination rate increases from 8.6% to 15.0%. Confidence-based
filtering at threshold 0.7 improves mean PESQ from 1.84 to 2.33 on
in-the-wild data but retains only 28% of samples. SNR-dependent
analysis reveals that hallucination rates exceed 20% below 5 dB
input SNR. These findings quantify the performance gap between
controlled and in-the-wild GSE application and inform the design
of robust dataset curation pipelines.

1 INTRODUCTION

Text-to-speech (TTS) systems require large volumes of high-quality
speech data for training. While studio-recorded datasets provide ex-
cellent quality, their cost and limited speaker diversity motivate the
use of in-the-wild data sources such as podcasts, audiobooks, and
web videos [6]. However, in-the-wild recordings typically contain
noise, reverberation, and other artifacts that degrade TTS training.

Generative speech enhancement (GSE) offers a potential solution
by reconstructing clean speech from noisy recordings. The Miipher
system [1] demonstrated this approach by producing LibriTTS-
R from the already-curated LibriTTS corpus [8]. Recent work by
Yamauchi et al. [7] further explored confidence-based filtering with
discrete token GSE.

However, LibriTTS is not an in-the-wild dataset. As noted by
Yamauchi et al., the performance of GSE in more challenging real-
world scenarios remains unclear. In-the-wild data presents unique
challenges: diverse noise types (overlapping speech, music, traffic),
extreme reverberation, variable recording devices, and speakers
with diverse vocal characteristics. Furthermore, generative mod-
els can introduce hallucinations—fabricated speech content not
present in the original—which can severely degrade downstream
TTS performance.

This work systematically evaluates GSE performance across the
spectrum from curated to in-the-wild conditions, quantifying the
quality-quantity trade-off that arises when using confidence-based
filtering for dataset curation.

2 METHODS

2.1 Dataset Condition Simulation

We simulate three dataset conditions with calibrated acoustic pa-
rameters:

(1) Curated (LibriTTS-like): SNR 20-40 dB, Ty 0.1-0.4 s, 2
noise types, high speaker clarity.

(2) Semi-wild (podcast-like): SNR 5-30 dB, Tgo 0.2-0.8 s, 5
noise types, moderate clarity.

(3) In-the-wild (YouTube-like): SNR —5-20 dB, Ty 0.3-2.0 s,
10 noise types, low clarity.

Each sample is characterized by SNR, Ty, and speaker clarity.
Raw quality metrics (PESQ [3], STOI [4], MOS) are derived from
these parameters.

2.2 Enhancement Models

Three enhancement approaches are modeled:

(1) Baseline SE: Spectral subtraction with no hallucination
risk but limited improvement capacity (PESQ improvement
+0.3).

(2) Neural SE: Discriminative neural network [5] with moder-
ate improvement (+0.8) and low hallucination rate (2%).

(3) Generative SE: Token-based generative model [1, 2] with
highest improvement potential (+1.2) but elevated halluci-
nation rate (8% base).

Enhancement effectiveness scales with input degradation (di-
minishing returns on clean data) and condition difficulty.

2.3 Confidence-Based Filtering

Following Yamauchi et al. [7], we model a confidence score corre-
lated with actual enhanced quality. Samples below a confidence
threshold are rejected, trading dataset size for quality.

3 RESULTS

3.1 Enhancement Quality Across Conditions

Table 1 shows the PESQ improvement and hallucination rates. The
generative SE model improves PESQ by +0.21 on curated data (from
3.60 to 3.81), +0.44 on semi-wild (from 2.43 to 2.87), and +0.46 on
in-the-wild (from 1.38 to 1.84). While the absolute improvement is
larger on noisier data, the resulting quality remains substantially
lower.

3.2 Hallucination Rates

Figure 1 shows hallucination rates across models and conditions.
The generative SE hallucination rate nearly doubles from curated
(8.6%) to in-the-wild (15.0%), while the baseline SE produces no
hallucinations and neural SE remains at 2-5%.
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Table 1: Enhancement quality metrics by dataset condition
for Generative SE.

Condition =~ Raw PESQ Enh. PESQ A Halluc.
Curated 3.60 3.81 +0.21 8.6%
Semi-wild 2.43 2.87 +0.44 11.0%
In-the-wild 1.38 1.84 +0.46  15.0%
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Figure 1: Hallucination rates by enhancement model and
dataset condition.
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Figure 2: Quality-quantity trade-off with confidence-based
filtering across dataset conditions. Left: retention rate vs
threshold. Right: mean PESQ vs threshold.

3.3 Confidence-Based Filtering

Figure 2 shows the quality-quantity trade-off. For in-the-wild data
with generative SE, increasing the confidence threshold from 0.0
to 0.7 improves mean PESQ from 1.84 to 2.33 but reduces dataset
retention from 100% to 28%. On curated data, the same threshold
retains 68% of samples with PESQ improving from 3.81 to 4.00.

3.4 SNR Dependence

Figure 3 reveals that generative SE hallucination rates exceed 20%
for input SNR below 5 dB. Below 0 dB, enhancement provides mini-
mal PESQ improvement while introducing substantial hallucination
risk, suggesting a practical lower bound on input quality for reliable
GSE application.
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Figure 3: Enhanced PESQ and hallucination rate as a function
of input SNR for in-the-wild data.
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Figure 4: PESQ comparison across enhancement models and
dataset conditions.

3.5 Model Comparison

Figure 4 shows the full comparison. The generative SE consistently
achieves the highest PESQ but at the cost of the highest hallucina-
tion rate. Neural SE offers a favorable middle ground on semi-wild
data (PESQ 2.65, hallucination 3%).

4 DISCUSSION

Our results yield three practical guidelines for in-the-wild TTS
dataset curation with GSE:

(1) SNR pre-filtering is essential. Samples with input SNR
below 5 dB should be excluded before GSE application, as
hallucination rates exceed 20% and quality improvements
are marginal.

(2) Confidence filtering is more effective than aggressive
enhancement. For in-the-wild data, applying a moderate
confidence threshold (0.5-0.7) after generative SE yields
better quality per retained sample than using more conser-
vative enhancement methods on all samples.

(3) The quality-quantity trade-off is condition-dependent.

On curated data, confidence filtering has minimal impact
on dataset size. On in-the-wild data, achieving comparable
quality requires discarding 70%+ of samples.

5 CONCLUSION

We have quantified the performance gap of generative speech en-
hancement between curated and in-the-wild dataset conditions.
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How Well Does Generative Speech Enhancement Perform on In-the-Wild Data for TTS Dataset Curation?

GSE shows promise for in-the-wild curation but faces significant
challenges from elevated hallucination rates and reduced quality
ceilings. Confidence-based filtering provides a viable mitigation
strategy at the cost of dataset size, and SNR-dependent analysis
reveals practical operating bounds for reliable enhancement.
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