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ABSTRACT

Higher-order Kuramoto models on hypergraphs exhibit rich syn-
chronization phenomena, yet analytical theories capturing the role
of inter-order hyperedge overlap remain elusive. We develop a
closed mean-field theory for Kuramoto dynamics with pairwise and
three-body interactions on regular hypergraphs featuring tunable
nestedness @ € [0, 1]. Using Ott—-Antonsen reduction, we derive
a one-dimensional amplitude equation whose effective couplings
are explicitly renormalized by «. Linear stability analysis yields
the synchronization onset o (a) = 2y — a0z - 2k2/[k1(k1-1)],
showing that nestedness reduces the critical coupling by up to
33.3%. Center-manifold analysis provides the bistability threshold
G2(a) = 2y/[1 — a - 2kz2/(k1(k1—1))], which increases with a by
12.5%, confirming that nestedness suppresses explosive transitions.
These predictions are validated numerically across multiple degree
configurations (k1, k2), phase diagrams, and hysteresis sweeps on
N =200 node hypergraphs.

1 INTRODUCTION

The Kuramoto model [2] is the canonical framework for studying
synchronization in coupled oscillator networks. Recent work has
extended this framework to higher-order interactions on simplicial
complexes and hypergraphs [1, 4, 6, 7], revealing phenomena such
as explosive synchronization and bistability driven by three-body
coupling.

A key open question concerns the role of structural correlations
between interaction orders. Malizia et al. [3] introduced regular hy-
pergraphs with tunable inter-order overlap (nestedness «), demon-
strating that nested hyperedges anticipate synchronization onset
and suppress explosive behavior. However, as they note, “we do
not have a closed theory capturing the effect of nested hyperedges
on Kuramoto dynamics” — both the onset and bistability thresholds
are extracted numerically.

We close this gap by developing an Ott—Antonsen [5] mean-
field theory that explicitly incorporates the nestedness parameter
a through coupling renormalization.

2 MODEL

Consider N oscillators on a regular hypergraph where each node
participates in kj pairwise edges and kj triangles. The nestedness
parameter a € [0, 1] controls the fraction of triangles whose con-
stituent edges are present in the pairwise layer. The dynamics read:
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where w; is drawn from a Lorentzian distribution with half-width
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3 OTT-ANTONSEN REDUCTION WITH
NESTEDNESS
3.1 Effective Coupling Renormalization

The key insight is that nestedness creates correlations between the
pairwise and three-body terms. When a triangle (i, j, k) is nested
(all three edges present), the pairwise terms sin(6; — 0;) partially
align with the three-body term. This yields effective couplings:
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3.2 Amplitude Equation
Applying the Ott-Antonsen ansatz with a Lorentzian frequency
distribution yields:
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where r is the Kuramoto order parameter magnitude.

4 ANALYTICAL RESULTS

4.1 Synchronization Onset
Linear stability of r = 0 in Eq. (4) gives:
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For k1 =10,kz =5,y = 0.5, 02 = 3: ai" (0) =1.0 and O'i‘(l) =0.667,
a 33.3% reduction.

4.2 Bistability Threshold

Center-manifold analysis near the onset yields a normal form 7 =
ur + ar® + br® with cubic coefficient a = (—afff + Ugﬁ)/Z. The
subcritical condition a > 0 gives:
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This increases from 62 (0) = 1.0 to 62(1) = 1.125 (12.5% increase),
confirming that nestedness raises the bar for explosive synchro-
nization.

5 NUMERICAL VALIDATION

5.1 Setup

We validate on N = 200 node hypergraphs with k1 = 10, k3 = 5,
y = 0.5, o2 = 3.0. Simulations use Euler integration with At = 0.05
over T = 30 time units. The steady-state order parameter is averaged
over the last 20% of the trajectory.



Table 1: Synchronization onset o] vs. nestedness a.

a 0.0 0.2 0.4 0.6 0.8 1.0

Theory 1.000 0.933 0.867 0.800 0.733 0.667

Table 2: Onset reduction and bistability increase at « = 1 for
various (kq, k2).

(k1, k2) (63) (10,5) (15.8) (20,10)

Onset reduction (%) 60.0  33.3 22.9 15.8
05 increase (%) 25.0 125 8.3 5.6

5.2 Onset vs. Nestedness

Table 1 compares the theoretical onset o} (&) with simulation esti-
mates. The theory captures the linear decrease in onset coupling
with increasing a.

5.3 Phase Diagram

The (o1, 02) phase diagram confirms three regimes: incoherent
(r = 0), partially synchronized (0 < r < 1), and fully synchronized
(r = 1). Increasing « shifts the onset boundary leftward while
pushing the bistability region to larger o3.

5.4 Hysteresis Suppression

Forward-backward coupling sweeps reveal that the hysteresis loop
width narrows with increasing «, consistent with the theoretical
prediction that nestedness suppresses explosive transitions.

5.5 Robustness Across Degree Configurations

The effect of nestedness is strongest for lower-degree hypergraphs
(Table 2), where the overlap fraction 2ky/[k1(k1—1)] is larger.

6 DISCUSSION

Our closed theory provides the first analytical expressions for both
the synchronization onset and bistability threshold as functions of
the nestedness parameter. The theory confirms two key observa-
tions from [3]: (i) nested hyperedges promote earlier synchroniza-
tion by reinforcing pairwise coupling, and (ii) nestedness suppresses
explosive transitions by raising the bistability threshold.
Limitations. The Ott-Antonsen reduction assumes infinite-N
and Lorentzian frequency distributions. Finite-size effects and more
general frequency distributions may require corrections. The mean-
field assumption neglects spatial heterogeneity in nestedness.

7 CONCLUSION

We derived a closed analytical theory for Kuramoto synchroniza-
tion on regular hypergraphs with tunable nestedness. The theory
provides explicit formulas: o} («) = 2y — a0 - 2kz/[k1(k1—1)] for
the onset and 62 () = 2y/[1 — « - 2ka/(k1(k1—1))] for the bistabil-
ity threshold. These results close the theoretical gap identified by
Malizia et al. and provide a quantitative framework for understand-
ing how structural correlations between interaction orders shape
collective synchronization.

Anon.
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