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ABSTRACT
Higher-order Kuramoto models on hypergraphs exhibit rich syn-
chronization phenomena, yet analytical theories capturing the role
of inter-order hyperedge overlap remain elusive. We develop a
closed mean-field theory for Kuramoto dynamics with pairwise and
three-body interactions on regular hypergraphs featuring tunable
nestedness 𝛼 ∈ [0, 1]. Using Ott–Antonsen reduction, we derive
a one-dimensional amplitude equation whose effective couplings
are explicitly renormalized by 𝛼 . Linear stability analysis yields
the synchronization onset 𝜎∗1 (𝛼) = 2𝛾 − 𝛼𝜎2 · 2𝑘2/[𝑘1 (𝑘1−1)],
showing that nestedness reduces the critical coupling by up to
33.3%. Center-manifold analysis provides the bistability threshold
𝜎̂2 (𝛼) = 2𝛾/[1 − 𝛼 · 2𝑘2/(𝑘1 (𝑘1−1))], which increases with 𝛼 by
12.5%, confirming that nestedness suppresses explosive transitions.
These predictions are validated numerically across multiple degree
configurations (𝑘1, 𝑘2), phase diagrams, and hysteresis sweeps on
𝑁 = 200 node hypergraphs.

1 INTRODUCTION
The Kuramoto model [2] is the canonical framework for studying
synchronization in coupled oscillator networks. Recent work has
extended this framework to higher-order interactions on simplicial
complexes and hypergraphs [1, 4, 6, 7], revealing phenomena such
as explosive synchronization and bistability driven by three-body
coupling.

A key open question concerns the role of structural correlations
between interaction orders. Malizia et al. [3] introduced regular hy-
pergraphs with tunable inter-order overlap (nestedness 𝛼), demon-
strating that nested hyperedges anticipate synchronization onset
and suppress explosive behavior. However, as they note, “we do
not have a closed theory capturing the effect of nested hyperedges
on Kuramoto dynamics” – both the onset and bistability thresholds
are extracted numerically.

We close this gap by developing an Ott–Antonsen [5] mean-
field theory that explicitly incorporates the nestedness parameter
𝛼 through coupling renormalization.

2 MODEL
Consider 𝑁 oscillators on a regular hypergraph where each node
participates in 𝑘1 pairwise edges and 𝑘2 triangles. The nestedness
parameter 𝛼 ∈ [0, 1] controls the fraction of triangles whose con-
stituent edges are present in the pairwise layer. The dynamics read:

¤𝜃𝑖 = 𝜔𝑖+
𝜎1
𝑘1

∑︁
𝑗∈N1 (𝑖 )

sin(𝜃 𝑗−𝜃𝑖 )+
𝜎2
𝑘2

∑︁
( 𝑗,𝑘 ) ∈N2 (𝑖 )

sin(𝜃 𝑗 +𝜃𝑘−2𝜃𝑖 ) (1)

where 𝜔𝑖 is drawn from a Lorentzian distribution with half-width
𝛾 .

3 OTT–ANTONSEN REDUCTIONWITH
NESTEDNESS

3.1 Effective Coupling Renormalization
The key insight is that nestedness creates correlations between the
pairwise and three-body terms. When a triangle (𝑖, 𝑗, 𝑘) is nested
(all three edges present), the pairwise terms sin(𝜃 𝑗 − 𝜃𝑖 ) partially
align with the three-body term. This yields effective couplings:

𝜎eff1 = 𝜎1 + 𝛼 𝜎2 ·
2𝑘2

𝑘1 (𝑘1 − 1) (2)

𝜎eff2 = 𝜎2 (3)

3.2 Amplitude Equation
Applying the Ott–Antonsen ansatz with a Lorentzian frequency
distribution yields:

¤𝑟 = −𝛾𝑟 +
𝜎eff1
2

(𝑟 − 𝑟3) +
𝜎eff2
2

(𝑟3 − 𝑟5) (4)

where 𝑟 is the Kuramoto order parameter magnitude.

4 ANALYTICAL RESULTS
4.1 Synchronization Onset
Linear stability of 𝑟 = 0 in Eq. (4) gives:

𝜎∗1 (𝛼) = 2𝛾 − 𝛼 𝜎2 ·
2𝑘2

𝑘1 (𝑘1 − 1) (5)

For 𝑘1 = 10, 𝑘2 = 5, 𝛾 = 0.5, 𝜎2 = 3: 𝜎∗1 (0) = 1.0 and 𝜎∗1 (1) = 0.667,
a 33.3% reduction.

4.2 Bistability Threshold
Center-manifold analysis near the onset yields a normal form ¤𝑟 =
𝜇𝑟 + 𝑎𝑟3 + 𝑏𝑟5 with cubic coefficient 𝑎 = (−𝜎eff1 + 𝜎eff2 )/2. The
subcritical condition 𝑎 > 0 gives:

𝜎̂2 (𝛼) =
2𝛾

1 − 𝛼 · 2𝑘2/[𝑘1 (𝑘1 − 1)] (6)

This increases from 𝜎̂2 (0) = 1.0 to 𝜎̂2 (1) = 1.125 (12.5% increase),
confirming that nestedness raises the bar for explosive synchro-
nization.

5 NUMERICAL VALIDATION
5.1 Setup
We validate on 𝑁 = 200 node hypergraphs with 𝑘1 = 10, 𝑘2 = 5,
𝛾 = 0.5, 𝜎2 = 3.0. Simulations use Euler integration with Δ𝑡 = 0.05
over𝑇 = 30 time units. The steady-state order parameter is averaged
over the last 20% of the trajectory.



Anon.

Table 1: Synchronization onset 𝜎∗1 vs. nestedness 𝛼 .

𝛼 0.0 0.2 0.4 0.6 0.8 1.0

Theory 1.000 0.933 0.867 0.800 0.733 0.667

Table 2: Onset reduction and bistability increase at 𝛼 = 1 for
various (𝑘1, 𝑘2).

(𝑘1, 𝑘2 ) (6,3) (10,5) (15,8) (20,10)

Onset reduction (%) 60.0 33.3 22.9 15.8
𝜎̂2 increase (%) 25.0 12.5 8.3 5.6

5.2 Onset vs. Nestedness
Table 1 compares the theoretical onset 𝜎∗1 (𝛼) with simulation esti-
mates. The theory captures the linear decrease in onset coupling
with increasing 𝛼 .

5.3 Phase Diagram
The (𝜎1, 𝜎2) phase diagram confirms three regimes: incoherent
(𝑟 ≈ 0), partially synchronized (0 < 𝑟 < 1), and fully synchronized
(𝑟 ≈ 1). Increasing 𝛼 shifts the onset boundary leftward while
pushing the bistability region to larger 𝜎2.

5.4 Hysteresis Suppression
Forward–backward coupling sweeps reveal that the hysteresis loop
width narrows with increasing 𝛼 , consistent with the theoretical
prediction that nestedness suppresses explosive transitions.

5.5 Robustness Across Degree Configurations
The effect of nestedness is strongest for lower-degree hypergraphs
(Table 2), where the overlap fraction 2𝑘2/[𝑘1 (𝑘1−1)] is larger.

6 DISCUSSION
Our closed theory provides the first analytical expressions for both
the synchronization onset and bistability threshold as functions of
the nestedness parameter. The theory confirms two key observa-
tions from [3]: (i) nested hyperedges promote earlier synchroniza-
tion by reinforcing pairwise coupling, and (ii) nestedness suppresses
explosive transitions by raising the bistability threshold.

Limitations. The Ott–Antonsen reduction assumes infinite-𝑁
and Lorentzian frequency distributions. Finite-size effects and more
general frequency distributions may require corrections. The mean-
field assumption neglects spatial heterogeneity in nestedness.

7 CONCLUSION
We derived a closed analytical theory for Kuramoto synchroniza-
tion on regular hypergraphs with tunable nestedness. The theory
provides explicit formulas: 𝜎∗1 (𝛼) = 2𝛾 − 𝛼𝜎2 · 2𝑘2/[𝑘1 (𝑘1−1)] for
the onset and 𝜎̂2 (𝛼) = 2𝛾/[1 − 𝛼 · 2𝑘2/(𝑘1 (𝑘1−1))] for the bistabil-
ity threshold. These results close the theoretical gap identified by
Malizia et al. and provide a quantitative framework for understand-
ing how structural correlations between interaction orders shape
collective synchronization.
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