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ABSTRACT

The dynamical processes that harden massive multiple-star systems
to tight separations remain unclear. We present a computational
framework that quantifies the relative contributions of disc-driven
torques, turbulent gas dynamics, and few-body (Kozai-Lidov) inter-
actions across 400 Monte Carlo realizations of hierarchical triple
systems with primary masses 10-100 M. Disc torques contribute a
mean fraction of 0.9994 +0.0017 of total hardening, with dynamical
interactions contributing 0.0006 + 0.0017 and turbulent gas effects
negligible. Of the simulated systems, 0.405 merge entirely and 0.425
reach tight separations (< 5 AU) within 3 Myr. The mean hardening
ratio is 75.1168 with a median of 1.6568. Kozai-Lidov oscillations
from outer companions can drive eccentricities above 0.9 at mu-
tual inclinations exceeding 40°, but their net energy extraction is
secondary. These results establish circumbinary disc torques as
the dominant hardening pathway during the embedded formation
phase.

1 INTRODUCTION

Massive stars predominantly exist in binary and higher-order mul-
tiple systems [3, 5]. Observations indicate that these systems can
undergo significant hardening shortly after formation, yet the spe-
cific processes responsible remain unclear [1].

Three mechanisms have been proposed: (1) resonant torques
from circumbinary/circumstellar discs [4], (2) dynamical friction
from turbulent natal gas, and (3) few-body gravitational interac-
tions including Kozai-Lidov oscillations in hierarchical triples [2].
We develop a computational framework to quantify their relative
contributions.

2 METHODS
2.1 Disc Torque Model

We model resonant torques from circumbinary discs following the
viscous evolution framework. The disc mass decays exponentially
with timescale 745 = 2.0 Myr, and the torque strength depends on
the binary mass ratio and the disc-to-star mass ratio.

2.2 Turbulent Gas Model

We compute gas dynamical friction from the natal molecular cloud
with density n = 10° cm™3, temperature T = 30 K, and turbu-
lent Mach number M = 5. Both laminar dynamical friction and
stochastic torques from density fluctuations are included.

2.3 Kozai-Lidov Model

For hierarchical triples, we compute the secular Kozai-Lidov eccen-
tricity oscillation with tidal dissipation at periastron. Hardening
occurs when high-eccentricity excursions bring the inner binary
within the tidal radius.

Table 1: Summary of Hardening Mechanism Contributions

Mechanism Mean Fraction ~ Std
Disc torques 0.9994 0.0017
Gas turbulence 0.0 0.0
Dynamical (KL) 0.0006 0.0017
Merged fraction 0.405 B
Tight fraction 0.425 -
Mean hardening ratio 75.1168 -
Median hardening ratio 1.6568 -

2.4 Population Survey

We simulate 400 hierarchical triple systems with primary masses
M; = 10-100 My, inner separations aj, = 5-200 AU, and outer
separations agyt = 100-5000 AU, evolving each for 3 Myr.

3 RESULTS

3.1 Mechanism Dominance

Disc torques overwhelmingly dominate the hardening process, con-
tributing a mean fraction of 0.9994 + 0.0017 across all 400 realiza-
tions. The dynamical (Kozai-Lidov) contribution is 0.0006 + 0.0017,
and the turbulent gas contribution is negligible at < 0.001.

3.2 Hardening Outcomes

Of the 400 simulated triple systems:

0.405 merge entirely within 3 Myr
0.425 reach tight separations (< 5 AU)

Mean hardening ratio: 75.1168
Median hardening ratio: 1.6568

The large difference between mean and median hardening ratios
reflects a bimodal outcome: systems with sufficiently massive discs
undergo dramatic hardening, while those with less favorable initial
conditions experience modest shrinkage.

3.3 Kozai-Lidov Effects

Kozai-Lidov oscillations can drive inner binary eccentricities above
0.9 at mutual inclinations exceeding 40°, but the net orbital en-
ergy extraction through tidal dissipation at periastron is modest
compared to disc torques during the embedded phase.

4 DISCUSSION

Our results demonstrate that disc-driven torques are the primary
hardening mechanism for massive multiple-star systems during the
embedded formation phase. The dominance of disc torques (0.9994)
over dynamical processes (0.0006) is robust across the parameter
space explored.
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Figure 1: Relative contributions of the three hardening mech-
anisms across 400 triple system realizations.
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Figure 2: Kozai-Lidov effects: maximum eccentricity (left)
and hardening ratio (right) vs mutual inclination for differ-
ent outer-to-inner separation ratios.
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Figure 3: Hardening ratio (left) and final separation (right)
vs primary mass for a fixed geometry.

The negligible contribution of turbulent gas dynamical friction is
explained by the relatively low gas densities at the relevant orbital
separations compared to the disc surface density at the inner disc
edge.

Kozai-Lidov oscillations become important after disc dispersal,
providing a secondary hardening channel for hierarchical systems
with favorable geometries (high mutual inclination, moderate sepa-
ration ratios).

Anon.

5 CONCLUSIONS

We establish disc-driven torques as the dominant hardening mecha-
nism for massive multiple-star systems, contributing 0.9994+0.0017
of total hardening. From 400 realizations, 0.405 merge and 0.425
reach tight separations within 3 Myr, with a mean hardening ratio
of 75.1168.
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