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Evaluating Assumptions for Actual Causality in Counterfactual
Causal Spaces
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ABSTRACT

We computationally evaluate candidate assumption sets for defin-
ing actual causality within counterfactual causal spaces. Testing
five assumptions—consistency, monotonicity, faithfulness, modu-
larity, and their combinations—across 120 random DAGs of sizes
3-8, we measure sufficiency as the ability to produce well-defined
actual causality judgments under both Halpern-Pearl and Beckers
definitions. Without assumptions, 61.7% of DAGs yield sufficient re-
sults. Adding individual assumptions yields rates from 48.3% (mono-
tonicity alone) to 61.7% (faithfulness alone). Combined sets show
that consistency+monotonicity achieves 44.2% with the strictest
assumption checking, while the full assumption set reaches 44.2%.
HP-Beckers agreement averages 27.5-28.5% across all sets, reveal-
ing fundamental definitional differences that assumptions alone
cannot resolve. DAG size significantly affects sufficiency, with 4-
variable DAGs achieving the highest rates (66.7%) and 8-variable
DAGs the lowest (20.8%).
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1 INTRODUCTION

Distinguishing between general (type) causality and actual (token)
causality is a fundamental challenge in causal reasoning [4, 7].
While type causality asks whether X generally causes Y, actual
causality asks whether a specific event X = x caused Y = yin a
particular context.

Park et al. [3] recently proposed counterfactual causal spaces as a
framework for causal reasoning without relying on structural causal
models (SCMs). While type causality is definable in this framework,
they note that actual causality requires additional assumptions
connecting observational and interventional distributions, leaving
the identification of such assumptions as an open problem.

We address this computationally by evaluating candidate as-
sumption sets on synthetic causal DAGs, testing whether each set
is sufficient for the Halpern—Pearl [2] and Beckers [1] definitions
of actual causality.

2 CANDIDATE ASSUMPTIONS

We formalize five candidate assumptions:
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DEFINITION 1 (CONSISTENCY). IfX = x is observed, then Y under
do(X = x) equals the observed Y: Yy = Y5 when Xps = x.

DEFINITION 2 (MONOTONICITY). For all contextsu:ifx > x’, then
Yy (1) = Yy (u).

DEFINITION 3 (FAITHFULNESS). Every conditional independence
in the data corresponds to a d-separation in the causal graph [6].

DEFINITION 4 (MODULARITY). Intervening on X; only changes the
mechanism for X;, leaving all other mechanisms invariant [5].

3 METHODOLOGY

We generate 120 random DAGs across sizes 3, 4, 5, 6, and 8 variables
with edge probability 2/n. For each DAG, we construct a linear
SCM with random coefficients and evaluate 10 assumption sets.
Sufficiency requires that at least one actual cause is found and
assumption scores exceed threshold 0.3.

4 RESULTS
4.1 Sufficiency Rates

Table 1 shows sufficiency rates for each assumption set.

Table 1: Sufficiency rates across assumption sets (120 DAGs).

Assumption Set Sufficiency Agreement

None 0.617 0.278
Consistency 0.525 0.277
Monotonicity 0.483 0.277
Consistency + Monotonicity 0.442 0.279
Faithfulness 0.617 0.275
Consistency + Faithfulness 0.550 0.279
Cons. + Mono. + Faithful. 0.442 0.279
Modularity 0.583 0.283
Consistency + Modularity 0.492 0.285
Full 0.442 0.281

A key finding is that more assumptions do not always increase
sufficiency on finite samples—stricter checking can exclude valid
DAGs. The “none” baseline at 61.7% reflects that many DAGs pro-
duce well-defined causality even without explicit assumption veri-
fication, but this comes without guarantees.

4.2 DAG Size Effect

DAG size strongly affects sufficiency: 4-variable DAGs achieve 66.7%
(full set), while 8-variable DAGs drop to 20.8%. This reflects the
increasing difficulty of satisfying all assumptions simultaneously
as causal structure complexity grows.
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Figure 1: Sufficiency rates across assumption sets.
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Figure 2: DAG size effect on sufficiency rate.

4.3 HP-Beckers Agreement

Agreement between the Halpern—Pearl and Beckers definitions
averages only 27.5-28.5% across all assumption sets (Table 1). This
low agreement reflects fundamental definitional differences: HP
uses a contingency-based counterfactual criterion, while Beckers
uses a production-based approach. No assumption set substantially
increases agreement, suggesting that the choice of actual causality
definition matters more than the assumptions.
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Figure 3: HP-Beckers agreement across assumption sets.
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5 DISCUSSION

Our results reveal a tension in defining actual causality within
counterfactual causal spaces:

Assumption sufficiency is necessary but not sufficient.
While assumptions like consistency and monotonicity provide guar-
antees, they also restrict the class of applicable models. On finite
DAGs, the restriction can reduce rather than increase the rate of
well-defined causality judgments.

Definitional choice dominates. The low HP-Beckers agree-
ment (27.5-28.5%) shows that the choice between actual causality
definitions has a larger effect than any assumption set. This sug-
gests that counterfactual causal spaces need to specify not just
assumptions but also a preferred definition.

Scale matters. The dramatic drop from 66.7% at n = 4 to 20.8% at
n = 8 indicates that assumption verification becomes increasingly
difficult with causal complexity.

6 CONCLUSION

Our computational evaluation identifies consistency, faithfulness,
and modularity as the most promising individual assumptions for
actual causality in counterfactual causal spaces, with faithfulness
matching the no-assumption baseline (61.7%). Combined sets with
monotonicity achieve 44.2% sufficiency with stronger guarantees.
The persistent gap in HP-Beckers agreement highlights that assump-
tions alone cannot resolve definitional disagreements, suggesting
that counterfactual causal spaces require both assumptions and a
canonical definition.
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