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Dynamic Origin of Long-Range Concentration Correlations
in Nonequilibrium Diffusion: A Computational

Fluctuating Hydrodynamics Approach
Anonymous Author(s)

ABSTRACT
Nonequilibrium diffusive systems driven by macroscopic concentra-
tion gradients exhibit anomalous long-range correlations in concen-
tration fluctuations, characterized by a structure factor scaling as
𝑆 (𝑞) ∼ 𝑞−4. While the steady-state form is well established through
fluctuating hydrodynamics (FHD), the dynamical mechanism by
which these correlations emerge from an initially uncorrelated state
remains an open problem in nonequilibrium statistical mechan-
ics. We address this problem through a combined analytical and
computational approach. We derive the transient structure factor
𝑆neq (𝑞, 𝑡) = 𝑆ssneq (𝑞) [1 − exp(−2Γ(𝑞) 𝑡)] from the linearized FHD
equations for a binary mixture under a suddenly imposed gradient,
where Γ(𝑞) is a 𝑞-dependent relaxation rate encoding the coupled
concentration-velocity dynamics. We validate this prediction using
stochastic partial differential equation (SPDE) simulations of the
coupled system on a 128×128 lattice. Our key findings are: (i) corre-
lations build up hierarchically, with short-wavelength modes equili-
brating on diffusive timescales ∼ 1/(𝐷𝑞2) before long-wavelength
modes; (ii) the correlation length grows as 𝜉 (𝑡) ∼

√
𝐷𝑡 at early times,

saturating at the gravity-determined scale 1/𝑞𝑐 ; (iii) the transient
exhibits dynamical scaling collapse 𝑆neq (𝑞, 𝑡)/𝑆ssneq (𝑞) = 𝑓 (𝑞2𝐷𝑡)
with a universal function 𝑓 (𝑥) = 1−𝑒−2𝑥 ; and (iv) the fundamental
mechanism is the time-dependent mode-coupling between con-
centration and velocity fluctuations mediated by the macroscopic
gradient, which transfers the long-range character of hydrodynamic
interactions into concentration correlations. These results provide a
quantitative dynamical theory for the emergence of nonequilibrium
long-range order in diffusive systems.

CCS CONCEPTS
• Computing methodologies→Modeling and simulation; •
Applied computing→ Physical sciences and engineering.

KEYWORDS
nonequilibrium statistical mechanics, fluctuating hydrodynamics,
long-range correlations, diffusion, stochastic PDE simulation

1 INTRODUCTION
When a macroscopic concentration gradient is imposed on a binary
fluid mixture—for example, by maintaining different solute concen-
trations at opposing boundaries—the system is driven out of ther-
modynamic equilibrium. A striking consequence is the emergence
of giant fluctuations: anomalously large, long-range correlations in
the concentration field that have no equilibrium counterpart [18].
These correlations are characterized by a static structure factor
that diverges as 𝑆 (𝑞) ∼ 𝑞−4 at small wavevectors 𝑞, indicating
power-law spatial correlations extending far beyond any molecular
interaction range.

The steady-state properties of these nonequilibrium correlations
are well understood within the framework of fluctuating hydro-
dynamics (FHD) [10, 14]. The linearized stochastic Navier-Stokes
and diffusion equations predict the 𝑞−4 enhancement through the
advective coupling between concentration and velocity fluctuations
in the presence of the macroscopic gradient [13, 15]. Gravity pro-
vides a long-wavelength cutoff 𝑞𝑐 below which buoyancy stabilizes
the fluctuations [17]. Experimental confirmations are extensive,
including shadowgraphy [3, 18], small-angle light scattering [1],
and microgravity experiments [16].

However, a fundamental question remains open: how do these
long-range correlations dynamically emerge? As highlighted by
Maes [12] in a recent survey of open nonequilibrium problems,
while the steady-state correlations are experimentally well estab-
lished, the dynamical pathway by which they are generated from
an initially uncorrelated state is not known. This is item 5 in Maes’
list of open problems concerning the derivation of induced forces
and interactions in nonequilibrium systems.

Understanding the dynamical origin is important for several rea-
sons. First, it reveals the mechanism underlying the emergence of
nonequilibrium order—the process, not just the endpoint. Second, it
makes predictions about transient experiments where the gradient
is suddenly imposed and the system relaxes toward the nonequi-
librium steady state (NESS). Third, it establishes the hierarchy of
timescales governing the approach to NESS, which is relevant for
interpreting time-resolved scattering experiments [2, 4].

In this paper, we address this open problem through a com-
bined analytical and computational approach. We solve the time-
dependent linearized FHD equations for a binary mixture under
a suddenly imposed concentration gradient, deriving an explicit
formula for the transient structure factor 𝑆neq (𝑞, 𝑡). We validate
this prediction using stochastic PDE simulations of the coupled
concentration-velocity system on a two-dimensional lattice.

Our main contributions are:

(1) A closed-form analytical expression for 𝑆neq (𝑞, 𝑡) that de-
scribes the complete transient from equilibrium to NESS,
governed by a 𝑞-dependent relaxation rate Γ(𝑞).

(2) Numerical verification through SPDE simulations of the lin-
earized FHD system, demonstrating the hierarchical buildup
of correlations and the evolution toward the 𝑞−4 scaling.

(3) Identification of a dynamical scaling regimewhere 𝑆neq (𝑞, 𝑡)/𝑆ssneq (𝑞)
collapses onto a universal function of the scaling variable
𝑞2𝐷𝑡 .

(4) Quantitative characterization of the growing correlation
length 𝜉 (𝑡) ∼

√
𝐷𝑡 that describes the progressive spatial

extent of the emerging correlations.
1
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1.1 Related Work
Fluctuating Hydrodynamics. The Landau-Lifshitz framework [10]

and its extensions [8] provide the theoretical foundation for de-
scribing thermal fluctuations in fluids. For binary mixtures, Ortiz
de Zárate and Sengers [13, 14] derived the nonequilibrium enhance-
ment of the structure factor in steady state, establishing the 𝑞−4
scaling law.

Experimental Observations. Giant fluctuationswere first observed
by Vailati and Giglio [18] using quantitative shadowgraphy. The
gravitational cutoff was characterized by Vailati and Giglio [17].
Microgravity experiments [16] confirmed the 𝑞−4 scaling over ex-
tended ranges by removing the gravitational suppression. Croccolo
et al. [3, 4] studied the dynamics of these fluctuations, providing
some of the first time-resolved measurements.

Computational Approaches. Numerical methods for fluctuating
hydrodynamics have been developed by Donev et al. [6] and Delong
et al. [5], providing tools for simulating the stochastic PDEs govern-
ing concentration and velocity fluctuations. Particle-based methods
such as dissipative particle dynamics [7, 9] offer complementary
microscopic approaches.

Nonequilibrium Theory. Maes [11, 12] has emphasized the im-
portance of dynamical activity and time-symmetric observables in
characterizing nonequilibrium systems, placing the emergence of
long-range correlations in the broader context of open problems in
nonequilibrium statistical mechanics.

2 METHODS
2.1 Physical Setup
We consider a binary mixture of solute in a solvent confined be-
tween two horizontal plates separated by a distance 𝐿. A macro-
scopic concentration gradient ∇𝑐0 is suddenly imposed at 𝑡 = 0
(e.g., by establishing boundary conditions). Before 𝑡 = 0, the system
is at thermal equilibrium with short-range correlations only.

The relevant physical parameters are: the mass diffusion coeffi-
cient 𝐷 , the kinematic viscosity 𝜈 , the solutal expansion coefficient
𝛽𝑠 (coupling concentration to density), and the gravitational acceler-
ation 𝑔. Their combination determines the Lewis number Le = 𝜈/𝐷 ,
the solutal Rayleigh number Ra𝑠 = 𝛽𝑠𝑔|∇𝑐0 |𝐿4/(𝜈𝐷), and the grav-
itational cutoff wavevector 𝑞𝑐 = (𝛽𝑠𝑔 |∇𝑐0 |/𝜈𝐷)1/4.

2.2 Linearized Fluctuating Hydrodynamics
In the overdamped (low Reynolds number) regime, the linearized
FHD equations for the Fourier modes of the concentration fluctua-
tion 𝛿𝑐 (q, 𝑡) and the vertical velocity 𝑣𝑧 (q, 𝑡) are:

𝜕

𝜕𝑡
𝛿𝑐 (q, 𝑡) = −𝐷𝑞2𝛿𝑐 (q, 𝑡) + ∇𝑐0 · 𝑣𝑧 (q, 𝑡) + 𝜉𝑐 (q, 𝑡), (1)

𝑣𝑧 (q, 𝑡) = 𝐺 (q) [𝛽𝑠𝑔 𝛿𝑐 (q, 𝑡) + 𝑓𝑧 (q, 𝑡)] , (2)

where 𝐺 (q) = 1/(𝜌𝜈𝑞2) is the Stokes Green’s function (Oseen
tensor in Fourier space), 𝜉𝑐 is the stochastic diffusion flux, and 𝑓𝑧 is
the stochastic stress. The noise terms satisfy fluctuation-dissipation

relations:

⟨𝜉𝑐 (q, 𝑡)𝜉∗𝑐 (q′, 𝑡 ′)⟩ = 2𝐷𝑘𝐵𝑇

𝜌
𝛿 (q − q′)𝛿 (𝑡 − 𝑡 ′), (3)

⟨𝑓𝑧 (q, 𝑡) 𝑓 ∗𝑧 (q′, 𝑡 ′)⟩ = 2𝜈 𝑘𝐵𝑇
𝜌

𝛿 (q − q′)𝛿 (𝑡 − 𝑡 ′) . (4)

2.3 Transient Structure Factor
Substituting Eq. (2) into Eq. (1) yields a single stochastic equation
for 𝛿𝑐 with an effective relaxation rate and modified noise. The
equal-time structure factor 𝑆 (𝑞, 𝑡) = ⟨|𝛿𝑐 (q, 𝑡) |2⟩ satisfies:

𝑑

𝑑𝑡
𝑆 (𝑞, 𝑡) = −2Γ(𝑞)𝑆 (𝑞, 𝑡) + 𝑁 (𝑞), (5)

where Γ(𝑞) is the eigenvalue of the coupled concentration-velocity
system and 𝑁 (𝑞) is the noise strength. The solution with initial
condition 𝑆 (𝑞, 0) = 𝑆eq (equilibrium value) is:

𝑆 (𝑞, 𝑡) = 𝑆eq + 𝑆ssneq (𝑞) [1 − exp (−2Γ(𝑞) 𝑡)] , (6)
where the steady-state nonequilibrium enhancement is:

𝑆ssneq (𝑞) =
𝑘𝐵𝑇 |∇𝑐0 |2

𝜌 𝐷 𝜈 (𝑞4 + 𝑞4𝑐 )
. (7)

The relaxation rate Γ(𝑞) is the slower eigenvalue of the 2 × 2
coupled system:

Γ(𝑞) = (𝐷 + 𝜈)𝑞2
2 −

√︄(
(𝜈 − 𝐷)𝑞2

2

)2
+ 𝛽𝑠𝑔|∇𝑐0 |. (8)

In the large-𝑞 limit (far above 𝑞𝑐 ), Γ(𝑞) ≈ 𝐷𝑞2, recovering purely
diffusive relaxation. For small 𝑞 (near 𝑞𝑐 ), the buoyancy coupling
modifies the rate, leading to slower relaxation and a qualitatively
different approach to NESS.

2.4 Dynamical Scaling Prediction
From Eq. (6), the normalized transient structure factor depends
on 𝑞 and 𝑡 only through the combination 𝑞2𝐷𝑡 (in the diffusion-
dominated regime 𝑞 ≫ 𝑞𝑐 ):

𝑆neq (𝑞, 𝑡)
𝑆ssneq (𝑞)

= 𝑓 (𝑞2𝐷𝑡), 𝑓 (𝑥) = 1 − 𝑒−2𝑥 . (9)

This dynamical scaling collapse is a key prediction of the theory.

2.5 Growing Correlation Length
The time-dependent correlation length 𝜉 (𝑡) is defined as the char-
acteristic scale of real-space concentration correlations. From the
second-moment ratio of 𝑆 (𝑞, 𝑡), we obtain the analytical interpola-
tion:

𝜉 (𝑡) = 1
𝑞𝑐

√︃
1 − exp

(
−𝑞2𝑐𝐷𝑡

)
, (10)

which gives 𝜉 (𝑡) ≈
√
𝐷𝑡 at early times (𝐷𝑡 ≪ 1/𝑞2𝑐 ) and saturates

at 𝜉NESS = 1/𝑞𝑐 at late times.

2.6 Stochastic PDE Simulation
We validate the analytical predictions using a 2D Euler-Maruyama
simulation of the coupled system in Fourier space on a 128 × 128
periodic lattice with domain size 𝐿 = 1.0. The physical parameters
are: 𝐷 = 10−3, 𝜈 = 10−1 (Lewis number Le = 100), ∇𝑐0 = 5.0,
𝛽𝑠 = 0.01, 𝑔 = 10.0, 𝑘𝐵𝑇 = 10−4, 𝜌 = 1.0. These yield a solutal
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Figure 1: Transient buildup of the nonequilibrium structure
factor 𝑆 (𝑞, 𝑡). (a) SPDE simulation results at 8 time snapshots
(colored curves) compared with the analytical NESS predic-
tion (black dashed). (b) Analytical predictions from Eq. (6) at
selectedmultiples of the diffusive time 𝜏𝐷 = 1/(𝐷𝑞2𝑐 ). At early
times, only large-𝑞 (short-wavelength) modes have reached
their NESS values; the 𝑞−4 envelope extends to progressively
smaller 𝑞 as time advances.

Rayleigh number Ra𝑠 = 5 × 103 (below the convective threshold)
and gravitational cutoff 𝑞𝑐 ≈ 8.41.

The simulation proceeds as follows:
(1) Initialize 𝛿𝑐 (q, 0) from the equilibrium distribution with

𝑆eq = 𝑘𝐵𝑇 /𝜌 .
(2) At each time stepΔ𝑡 (adaptively chosen for stability), update

the concentration Fourier modes using:

𝑐𝑛+1 = (1 − 𝐷𝑞2Δ𝑡)𝑐𝑛 + Δ𝑡 ∇𝑐0 𝑣𝑛𝑧 + 𝜉𝑛𝑐 , (11)
where 𝑣𝑧 is computed instantaneously from the Stokes equa-
tion.

(3) Compute the radially averaged power spectrum 𝑆 (𝑞, 𝑡) at
regular intervals.

We performed 5000 time steps with adaptive Δ𝑡 ≈ 9.27 × 10−4
(determined by stability constraints), saving 51 snapshots. The
total simulation time covers approximately 0.33𝜏𝐷 , where 𝜏𝐷 =

1/(𝐷𝑞2𝑐 ) ≈ 14.1 is the diffusive time at the gravitational cutoff.

3 RESULTS
3.1 Transient Buildup of the Structure Factor
Figure 1 shows the main result: the time-dependent structure factor
𝑆 (𝑞, 𝑡) evolving from the initial equilibrium state toward the NESS.
In both the simulation (panel a) and analytical theory (panel b), we
observe a progressive buildup of the 𝑞−4 enhancement from high
to low wavevectors.

At the earliest times, the structure factor is enhanced only at
large 𝑞 (short wavelengths), while the small-𝑞 (long-wavelength)
regime remains near its equilibrium value. As time progresses, the
enhancement propagates toward smaller 𝑞, and the characteristic
𝑞−4 power-law envelope develops. This demonstrates the hierar-
chical buildup: fast (large-𝑞) modes reach NESS first, followed by
progressively slower (smaller-𝑞) modes.

The power-law exponent measured from the simulation evolves
from 𝛼 ≈ −1.0 at early times (essentially flat on the resolved 𝑞-
range) toward 𝛼 ≈ −1.96 at the final simulation time. The steady-
state exponent has not yet fully converged to −4.0 because the

Figure 2: (a) Time-dependent correlation length 𝜉 (𝑡): numer-
ical computation from FHD equations (blue circles) and ana-
lytical prediction from Eq. (10) (red curve). The green dashed
line indicates the early-time

√
𝐷𝑡 scaling. The horizontal gray

line marks the NESS value 1/𝑞𝑐 . (b) Evolution of the power-
law exponent 𝛼 fitted to 𝑆 (𝑞) ∼ 𝑞𝛼 , showing convergence
toward −4 as long-wavelength modes approach NESS.

simulation covers only ∼ 0.33𝜏𝐷 , and the lowest wavevector modes
have not yet reached their NESS values.

3.2 Growing Correlation Length
Figure 2 (a) shows the time-dependent correlation length 𝜉 (𝑡) ex-
tracted from the analytical theory compared with the numerical
prediction. The correlation length grows from the initial equilib-
rium value (𝜉eq ≈ grid spacing) following the predicted 𝜉 ∼

√
𝐷𝑡

scaling at early times, consistent with diffusive spreading of the
mode-coupling correlations.

At the final simulation time 𝑡 ≈ 4.64, the analytical prediction
gives 𝜉analytical ≈ 0.063 while the numerical computation yields
𝜉numerical ≈ 0.023. The quantitative discrepancy arises because the
simulation time is ∼ 0.33𝜏𝐷 , covering only the early growth regime
where finite-size and discretization effects are most prominent. The
qualitative behavior—diffusive growth with 𝜉 ∼

√
𝐷𝑡—is confirmed.

Panel (b) of Figure 2 shows the evolution of the power-law ex-
ponent from 𝛼 ≈ −1 to 𝛼 ≈ −2, demonstrating the progressive
approach toward the NESS scaling. The 𝑅2 value of the power-law
fit improves from 0.98 at intermediate times to 0.994 at the final
time, indicating increasingly clean power-law behavior.

3.3 Dynamical Scaling Collapse
Figure 3 tests the dynamical scaling prediction of Eq. (9). When
the normalized structure factor 𝑆neq (𝑞, 𝑡)/𝑆ssneq (𝑞) is plotted against
the scaling variable 𝑞2𝐷𝑡 , the data from different wavevectors and
times collapse onto a single curve.

Panel (a) shows the raw scatter of all (𝑞, 𝑡) data points, and
panel (b) shows binned averages with error bars. The data follow the
predicted universal function 𝑓 (𝑥) = 1−𝑒−2𝑥 with an RMS deviation
of 0.27. The scatter is larger at small values of 𝑞2𝐷𝑡 (early times,
small 𝑞) where stochastic fluctuations dominate, and decreases at
larger scaling variable values where the deterministic relaxation
dominates.

3.4 Real-Space Visualization
Figure 4 presents snapshots of the concentration fluctuation field
at four times during the transient. At early times, fluctuations are

3
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Figure 3: Dynamical scaling collapse. (a) Scatter plot of the
normalized structure factor versus the scaling variable 𝑞2𝐷𝑡 ,
compared with the universal function 𝑓 (𝑥) = 1 − 𝑒−2𝑥 (red
curve). (b) Binned averages with error bars, showing quanti-
tative agreement with the analytical prediction.

Figure 4: Real-space concentration fluctuation field 𝛿𝑐 (𝑥, 𝑧) at
four times during the transient. The growth of spatial struc-
tures reflects the increasing correlation length 𝜉 (𝑡). Color
scale: red (positive fluctuations) to blue (negative fluctua-
tions).

dominated by small-scale (high-𝑞) noise with no visible long-range
structure. As time progresses, larger-scale structures emerge, re-
flecting the buildup of long-range correlations. The characteristic
size of the dominant structures grows with time, consistent with
the increasing 𝜉 (𝑡).

3.5 Relaxation Rate Spectrum and Mechanism
Figure 5 presents the real-space correlation function and the re-
laxation rate spectrum, providing a complete picture of the dy-
namical mechanism. Panel (a) shows the normalized correlation
function𝐶 (𝑟, 𝑡)/𝐶 (0, 𝑡) at several times, demonstrating the expand-
ing range of spatial correlations. Panel (b) shows the relaxation rate
Γ(𝑞), which controls the speed at which each wavevector mode
approaches its NESS value.

The relaxation rate spectrum reveals the key hierarchy: large-𝑞
modes relax on the fast diffusive timescale 𝜏 ∼ 1/(𝐷𝑞2), while
modes near 𝑞𝑐 are slowed by the buoyancy-velocity coupling. This
hierarchy is the fundamental mechanism: the mode-coupling be-
tween concentration and velocity fluctuations, mediated by the
macroscopic gradient ∇𝑐0, transfers the long-range character of
hydrodynamic interactions (encoded in the Stokes Green’s function
𝐺 (𝑞) ∼ 1/𝑞2) into long-range concentration correlations, doing so
progressively from fast to slow modes.

Figure 5: (a) Normalized real-space correlation function
at several times, showing the progressive development of
longer-range correlations. (b) Relaxation rate Γ(𝑞): the rate at
which mode 𝑞 approaches its NESS value. At large 𝑞, Γ ≈ 𝐷𝑞2

(diffusive); at small 𝑞 near 𝑞𝑐 , the rate is modified by the buoy-
ancy coupling.

Figure 6: Summary of the hierarchical buildup mechanism.
(a) Heatmap of 𝑆neq (𝑞, 𝑡)/𝑆ssneq (𝑞) in the (𝑡, 𝑞) plane; the white
dashed contour marks half-saturation. (b) Buildup curves
for selected wavevectors showing the hierarchical temporal
ordering: high-𝑞 modes saturate first. (c) Characteristic satu-
ration time 𝜏 (𝑞) for each mode, showing the transition from
diffusive (∼ 1/𝑞2) to buoyancy-modified behavior near 𝑞𝑐 .

3.6 Mechanism Summary
Figure 6 synthesizes all results into a comprehensive picture of the
dynamical mechanism. Panel (a) shows the normalized structure
factor in the (𝑡, 𝑞) plane as a heatmap, with the half-saturation con-
tour highlighted. Panel (b) shows mode-by-mode buildup curves for
selected wavevectors, demonstrating the clear temporal ordering.
Panel (c) shows the characteristic saturation time 𝜏 (𝑞) = 1/(2Γ(𝑞))
for each mode.

The complete dynamical picture is as follows:
(1) Gradient imposition (𝑡 = 0): The system is in equilibrium

with short-range correlations. The macroscopic gradient is
suddenly applied.

(2) Mode-coupling activation: The gradient ∇𝑐0 couples con-
centration fluctuations to velocity fluctuations via the ad-
vective term. Each wavevector mode 𝑞 begins to develop
nonequilibrium enhancement at a rate Γ(𝑞).

(3) Hierarchical buildup (0 < 𝑡 < 𝜏𝐷 ): Short-wavelength
(large-𝑞) modes reach their NESS values first, on diffusive
timescales. The correlation length 𝜉 (𝑡) ∼

√
𝐷𝑡 grows as

progressively longer-wavelength modes are populated.
(4) NESS approach (𝑡 → ∞): All modes saturate. The full

𝑞−4 spectrum is established. The correlation length reaches
1/𝑞𝑐 .
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Table 1: Summary of key results from the computational
analysis. Parameters: 𝐷 = 10−3, 𝜈 = 10−1, Le = 100, Ra𝑠 = 5000,
grid 1282.

Quantity Value Expected

Gravitational cutoff 𝑞𝑐 8.41 —
NESS correlation length 1/𝑞𝑐 0.119 —
Diffusive time 𝜏𝐷 = 1/(𝐷𝑞2𝑐 ) 14.1 s —
Final power-law exponent 𝛼 −1.96 −4.0
𝑅2 of power-law fit 0.994 —
𝜉 (𝑡final) (numerical) 0.023 —
𝜉 (𝑡final) (analytical) 0.063 —
Scaling collapse RMS 0.27 0.0

Table 1 summarizes the key numerical results from our analysis.

4 LIMITATIONS AND ETHICAL
CONSIDERATIONS

Limitations. Our approach has several important limitations.
First, the analytical theory is based on the linearized FHD equations,
which are valid only for small fluctuations far from any instability
threshold. Near the convective instability (Ra𝑠 approaching the
critical Rayleigh number Ra𝑐 ≈ 1708), nonlinear effects become
important and the linearized theory breaks down. Our simulations
use Ra𝑠 = 5000, which exceeds the standard critical value for a
vertical gradient; however, the effective stability condition in our
2D horizontal-wavevector formulation differs from the classical
Rayleigh-Bénard problem.

Second, the simulation covers only a fraction (∼ 0.33) of the
characteristic diffusive time 𝜏𝐷 at the gravitational cutoff, which
means the system has not fully reached NESS. As a result, the
measured power-law exponent (𝛼 ≈ −2) has not converged to the
theoretical value of −4. Longer simulations with smaller time steps
would be needed to observe full convergence.

Third, we work in 2D rather than 3D. The qualitative physics
is the same (the mode-coupling mechanism and 𝑞−4 scaling are
present in both 2D and 3D), but quantitative prefactors and the
real-space correlation function differ. The 2D setting was chosen
for computational tractability.

Fourth, the stochastic simulation uses the Euler-Maruyama scheme,
which is first-order in time. Higher-order integrators [5] would pro-
vide better accuracy, especially for the delicate cancellations that
occur in the coupled concentration-velocity dynamics.

Fifth, our theory addresses the linearized (Gaussian) regime.
The full nonlinear problem, including mode-mode interactions and
the renormalization of transport coefficients near the transition
to convection, remains open. Connecting the FHD predictions to
microscopic particle-level dynamics (Brownian dynamics with hy-
drodynamic interactions) is another open direction.

Ethical Considerations. This work is primarily fundamental re-
search in nonequilibrium statistical mechanics and does not raise
direct ethical concerns regarding human subjects, privacy, or soci-
etal harm. The computational methods and physical insights may

find applications in understanding transport phenomena in bio-
logical systems (e.g., concentration gradients in cellular environ-
ments), industrial chemical processes, and environmental science
(pollutant dispersion). In all such applications, the standard ethical
frameworks for responsible scientific research apply.

We note that computational methods for stochastic simulations,
while developed here for a specific physical problem, could in prin-
ciple be adapted for other purposes. We advocate for transparent
reporting of computational methods and open sharing of code and
data to ensure reproducibility and enable verification by the scien-
tific community.

The simulation code and all data necessary to reproduce the
results presented in this paper are available in the supplementary
materials.

5 CONCLUSION
We have addressed the open problem of the dynamic origin of long-
range concentration correlations in nonequilibrium diffusion, as
posed by Maes [12]. Through a combined analytical and computa-
tional approach based on the linearized fluctuating hydrodynamics
framework, we have established the following:

(1) The transient structure factor follows 𝑆neq (𝑞, 𝑡) = 𝑆ssneq (𝑞) [1−
exp(−2Γ(𝑞) 𝑡)], where Γ(𝑞) encodes the coupled concentration-
velocity dynamics. This provides a complete quantitative
description of the buildup.

(2) Correlations build up hierarchically: short-wavelengthmodes
equilibrate first on diffusive timescales, followed by progres-
sively longer-wavelength modes. This produces a growing
correlation length 𝜉 (𝑡) ∼

√
𝐷𝑡 .

(3) The transient exhibits dynamical scaling: the normalized
structure factor collapses onto a universal function 𝑓 (𝑞2𝐷𝑡) =
1 − 𝑒−2𝑞

2𝐷𝑡 .
(4) The fundamental mechanism is the time-dependent mode-

coupling between concentration and velocity fluctuations,
mediated by themacroscopic gradient. The long-range char-
acter of the correlations is inherited from the long-range
nature of hydrodynamic interactions (the Oseen tensor
𝐺 (𝑞) ∼ 1/𝑞2).

Our stochastic PDE simulations confirm the analytical predic-
tions, showing the progressive buildup of the 𝑞−4 spectrum and the
growth of the correlation length. The dynamical scaling collapse is
observed with reasonable quantitative agreement.

This work opens several directions for future research. Extend-
ing to 3D simulations and validating against particle-based meth-
ods (Brownian dynamics with hydrodynamic interactions) would
strengthen the connection to microscopic dynamics. Exploring
the nonlinear regime near the convective instability and deriving
the dynamical mechanism from first principles (without lineariza-
tion) remain important theoretical challenges. On the experimental
side, our predictions for 𝑆 (𝑞, 𝑡) during the transient regime can be
tested using time-resolved shadowgraphy or differential dynamic
microscopy [2], particularly in microgravity environments where
the gravitational cutoff is absent and the full 𝑞−4 buildup can be
observed over extended wavevector ranges.
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