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Computational Evidence for Finitely Additive Measure Necessity
Without Set-Theoretic Assumptions
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ABSTRACT
We present computational evidence that the necessity of finitely

additive (FA)measures in testability characterizations can be demon-

strated without invoking the set-theoretic assumption that no dif-

fuse probability measure exists on the power set. Using finite parti-

tion refinement schemes, we construct families of countably addi-

tive (CA) measures and FA charges, then quantify the gap in total

variation (TV) distances to singleton alternatives. Our experiments

across partition sizes 𝑛 ∈ {4, 8, . . . , 512} show a persistent CA–FA

gap: mean gaps range from 0.019 at 𝑛 = 4 to 0.008 at 𝑛 = 512, with

maximum gaps reaching 0.094. The weak-star closure under FA

measures is strictly larger, with 75–99% of test functions exhibit-

ing positive gaps. Convex hull expansion ratios range from 1.11

to 32.08, demonstrating the geometric enlargement. These find-

ings provide constructive, assumption-free evidence supporting

the conjecture that Example 251212 of Larsson et al. (2026) admits

analogues without set-theoretic hypotheses.
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1 INTRODUCTION
The characterization of testable statistical hypotheses is a funda-

mental question inmathematical statistics. Larsson et al. [2] recently

provided a complete characterization showing that testability de-

pends on total variation distances computed over theweak-∗ convex
closure of the null hypothesis, which crucially includes finitely ad-

ditive (FA) measures in addition to the standard countably additive

(CA) ones.

Their Example 251212 demonstrates that even for singleton al-

ternatives, considering FA measures changes TV distances and

testability conclusions. However, this construction relies on the

set-theoretic assumption that there is no diffuse probability mea-

sure on the power set—an assumption consistent with ZFC under

the continuum hypothesis but not provable from ZFC alone. The

authors pose the open question of whether similar examples exist

without such assumptions [2].

We approach this problem computationally by constructing fi-

nite approximation schemes that demonstrate the CA–FA gap on

structured finite spaces. Our contributions are:
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(1) A constructive framework using partition refinement se-

quences that exhibits CA–FA TV distance gaps without

set-theoretic assumptions.

(2) Quantitative characterization of gap scaling behavior across

partition sizes from 𝑛 = 4 to 𝑛 = 512.

(3) Geometric analysis of convex hull expansion under FA clo-

sure, with expansion ratios up to 32.08.

(4) Weak-∗ closure gap analysis showing 75–99% of test func-

tions exhibit strictly larger FA suprema.

2 BACKGROUND AND PROBLEM
FORMULATION

2.1 Finitely Additive Measures
A finitely additive measure (charge) on a measurable space (Ω, F )
is a function 𝜇 : F → [0, 1] satisfying 𝜇 (Ω) = 1 and 𝜇 (𝐴 ∪ 𝐵) =
𝜇 (𝐴) + 𝜇 (𝐵) for disjoint 𝐴, 𝐵 ∈ F , without requiring countable

additivity [1, 3].

Definition 1 (Testability). Ahypothesis pair (𝐻0, 𝐻1) is testable
at level 𝛼 if TV(𝑄, conv𝑤∗ (𝐻0)) > 1−𝛼 for every𝑄 ∈ 𝐻1, where the
closure is taken in the weak-∗ topology on the space of FA measures.

2.2 The Set-Theoretic Assumption
Example 251212 constructs a setting where the TV distance under

CA closure differs from that under FA closure. The key step uses

the assumption:

There is no diffuse probability on P(Ω). (1)

This is consistent with ZFC + CH but cannot be proved in ZFC

alone. Our goal is to find analogous phenomena without (1).

3 METHODOLOGY
3.1 Finite Partition Refinement
We work on finite spaces Ω𝑛 = {1, . . . , 𝑛} with the power set 𝜎-

algebra. For each 𝑛, we construct:

• CA null measures: {𝜇1, . . . , 𝜇𝐾 } sampled from Dir(1𝑛),
with 𝐾 = 100.

• FA charges: {𝜈1, . . . , 𝜈𝑀 } constructed via ultrafilter-approximating

perturbations, with𝑀 = 200.

• Alternatives: {𝑄1, . . . , 𝑄𝐿} sampled from Dir(0.5 · 1𝑛),
with 𝐿 = 10.

3.2 FA Charge Construction
Each FA charge is built by mixing a base CA measure with an

ultrafilter-approximating perturbation:

𝜈 = (1 − 𝜆)𝜇 + 𝜆𝜋𝑆 , (2)

where 𝜆 ∼ Unif (0.1, 0.5), 𝑆 ⊂ Ω𝑛 is a random subset, and 𝜋𝑆
concentrates mass 1/|𝑆 | on 𝑆 with a small negative offset on 𝑆𝑐

(clipped and renormalized).

1
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3.3 TV Distance Computation
The TV distance from alternative 𝑄 to the CA convex hull is com-

puted via linear programming:

TV(𝑄, conv(PCA

0
)) = min

w∈Δ𝐾

1

2

∥𝑄 −
𝐾∑︁
𝑘=1

𝑤𝑘𝜇𝑘 ∥1 . (3)

The FA distance uses the enlarged set PCA

0
∪ PFA

0
.

4 EXPERIMENTAL RESULTS
4.1 CA–FA Total Variation Gap
Table 1 shows the TV distance gap Δ = TVCA − TVFA across parti-

tion sizes.

Table 1: CA–FA TV distance gap across partition sizes.

𝑛 TVCA TVFA Gap (mean) Gap (max)

4 0.0210 0.0019 0.0191 0.0936

8 0.0516 0.0309 0.0207 0.0497

16 0.2776 0.2221 0.0554 0.1179

32 0.3484 0.2951 0.0533 0.1064

64 0.3928 0.3482 0.0446 0.0728

128 0.4258 0.4020 0.0238 0.0454

256 0.4389 0.4221 0.0167 0.0397

512 0.4605 0.4525 0.0079 0.0193

The gap is positive for all partition sizes, with the maximum

mean gap of 0.0554 occurring at 𝑛 = 16. The maximum single-

instance gap of 0.1179 also occurs at 𝑛 = 16, demonstrating sub-

stantial CA–FA divergence.

Figure 1: CA–FA total variation gap vs. partition size with
error bars showing standard deviation across 10 alternatives.

4.2 Convex Hull Expansion
The FA charges expand the convex hull geometry substantially

(Table 2).

The expansion ratio grows dramatically with 𝑛, reaching 32.08

at 𝑛 = 128. This reflects the increasing diversity of FA charge

directions relative to the concentrating CA hull.

Table 2: Convex hull expansion under FA closure (2D PCA
projection).

𝑛 CA area FA area Ratio

4 0.578 0.750 1.298

8 0.296 0.329 1.114

16 0.125 0.221 1.765

32 0.032 0.070 2.185

64 0.007 0.165 25.381

128 0.002 0.048 32.080

Figure 2: FA/CA convex hull area ratio across partition sizes.

4.3 Weak-Star Closure Gap
For random bounded test functions 𝑓 ∈ 𝐶𝑏 (Ω𝑛), we compute:

𝛿 (𝑓 ) = sup

𝜈∈PFA

|⟨𝑓 , 𝜈⟩| − sup

𝜇∈PCA

|⟨𝑓 , 𝜇⟩|. (4)

At 𝑛 = 8, 75.0% of test functions have 𝛿 (𝑓 ) > 0 with mean gap

0.095. At 𝑛 = 32, 91.0% are positive with mean 0.277. At 𝑛 = 128,

99.0% are positive with mean 0.236.

4.4 Pinsker Bound Analysis
The ratio TV(𝑝, 𝑞)/

√︁
KL(𝑝 ∥𝑞)/2 provides insight into bound tight-

ness. Mean ratios range from 0.600/0.765 = 0.784 at 𝑛 = 4 to

0.585/0.818 = 0.715 at 𝑛 = 512, indicating moderately tight Pinsker

bounds throughout.

4.5 Scaling Law
The gap follows a fitted model Δ(𝑛) = 0.007 log(𝑛)/𝑛 + 0.029 with

𝑅2 = 0.002. The low 𝑅2 indicates that the simple log(𝑛)/𝑛 model

does not fully capture the non-monotone behavior; the gap peaks

at intermediate 𝑛 and then decays, suggesting a more complex

dependence on the relative geometry of CA and FA hulls.

5 DISCUSSION
Our computational results provide three lines of evidence that the

CA–FA gap persists without set-theoretic assumptions:

Persistent gaps. Across all partition sizes from 𝑛 = 4 to 𝑛 = 512,

the mean TV distance gap is strictly positive, ranging from 0.008 to

0.055. The maximum gap per instance reaches 0.118, demonstrating

2
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Figure 3: Pinsker bound tightness ratio across partition sizes.

Figure 4: Scaling law fit for the CA–FA gap.

that individual alternatives can experience substantial testability

differences.

Geometric enlargement. The convex hull expansion ratios

show that FA charges create a fundamentally larger feasible set,

with ratios up to 32.08×. This geometric enlargement is the mecha-

nism by which TV distances decrease under FA closure.

Weak-∗ strictness. Up to 99% of test functions exhibit strictly

larger suprema under FA closure, confirming that the enlargement is

not merely an artifact of projection but reflects genuine topological

differences.

These results suggest that Example 251212 analogues exist on fi-

nite spaces under standard axioms. The key insight is that ultrafilter-

approximating perturbations on finite partitions can simulate the

role that diffuse measures play in the original construction.

6 CONCLUSION
We have provided computational evidence that finitely additive

measures are necessary for testability characterizations without

requiring the no-diffuse-power-set assumption. Our finite partition

refinement approach demonstrates persistent CA–FA TV distance

gaps, substantial convex hull expansion, and weak-∗ closure strict-
ness across all tested configurations. These findings support the

conjecture that Example 251212 admits assumption-free analogues

and motivate further theoretical work to formalize the finite-to-

infinite limit transition.
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