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ABSTRACT (1) A constructive framework using partition refinement se- 65
We present computational evidence that the necessity of finitely quences th.at exhibits' CA-FA TV distance gaps without e
additive (FA) measures in testability characterizations can be demon- set—the',or f.’tlc assumptl.ons.. . ' o
strated without invoking the set-theoretic assumption that no dif- (2) Quantitative characterization of gap scaling behavior across o
fuse probability measure exists on the power set. Using finite parti- part1t10n. sizes fr. omn = 4ton =512 . o
tion refinement schemes, we construct families of countably addi- ®) Geomet.rlc analy51‘s of convex hull expansion under FA clo- 7
tive (CA) measures and FA charges, then quantify the gap in total sure, with expansion ratlos. up to 3'2-08- n
variation (TV) distances to singleton alternatives. Our experiments © Weak-* C%O.Sure &ap analysis showing 75-99% of test func- 7/2
across partition sizes n € {4,8,...,512} show a persistent CA-FA tions exhibit strictly larger FA suprema. &
gap: mean gaps range from 0.019 at n = 4 to 0.008 at n = 512, with 74
maximum gaps reaching 0.094. The weak-star closure under FA 2 BACKGROUND AND PROBLEM ”
measures is strictly larger, with 75-99% of test functions exhibit- FORMULATION 76
ing positi(\ize gaps. Convexhhull expansion lratios rang?r }flromfi.ldl 2.1 Finitely Additive Measures :;
to 32.08, demonstrating the geometric enlargement. ese find- . .
. . & & . & . . A finitely additive measure (charge) on a measurable space (Q, ) 79
ings provide constructive, assumption-free evidence supporting . | o
. . is a function p : ¥ — [0, 1] satisfying p(Q) = 1 and p(AU B) = 80
the conjecture that Example 251212 of Larsson et al. (2026) admits o > o
. . u(A) + p(B) for disjoint A,B € ¥, without requiring countable 81
analogues without set-theoretic hypotheses. S
additivity [1, 3]. 82
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1 INTRODUCTION

The characterization of testable statistical hypotheses is a funda-
mental question in mathematical statistics. Larsson et al. [2] recently
provided a complete characterization showing that testability de-
pends on total variation distances computed over the weak-* convex
closure of the null hypothesis, which crucially includes finitely ad-
ditive (FA) measures in addition to the standard countably additive
(CA) ones.

Their Example 251212 demonstrates that even for singleton al-
ternatives, considering FA measures changes TV distances and
testability conclusions. However, this construction relies on the
set-theoretic assumption that there is no diffuse probability mea-
sure on the power set—an assumption consistent with ZFC under
the continuum hypothesis but not provable from ZFC alone. The
authors pose the open question of whether similar examples exist
without such assumptions [2].

We approach this problem computationally by constructing fi-
nite approximation schemes that demonstrate the CA-FA gap on
structured finite spaces. Our contributions are:

Conference’17, July 2017, Washington, DC, USA
2026. ACM ISBN 978-x-xxxx-xxxx-X/YY/MM. .. $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

DEFINITION 1 (TESTABILITY). A hypothesis pair (Hy, Hy) is testable 83

atlevel a if TV(Q,conv™*(Hy)) > 1—a for every Q € Hy, where the
closure is taken in the weak-+ topology on the space of FA measures.

84
85
86

87

2.2 The Set-Theoretic Assumption

Example 251212 constructs a setting where the TV distance under
CA closure differs from that under FA closure. The key step uses
the assumption:

88
89
90
91
There is no diffuse probability on P(Q). (1) 92

This is consistent with ZFC + CH but cannot be proved in ZFC .

alone. Our goal is to find analogous phenomena without (1). o

95

3 METHODOLOGY %
97

3.1 Finite Partition Refinement o8
We work on finite spaces Q, = {1,...,n} with the power set o- 99
algebra. For each n, we construct: 100
e CA null measures: {y1,..., ux} sampled from Dir(1,), 101
with K = 100. 102

o FA charges: {v1, ..., vy} constructed via ultrafilter-approximatin@
perturbations, with M = 200. 104

e Alternatives: {Q1,...,Qr} sampled from Dir(0.5 - 1,), 105
with L = 10. 106

107

3.2 FA Charge Construction 108

Each FA charge is built by mixing a base CA measure with an 17

ultrafilter-approximating perturbation: 1o

111

v=(1-p+Ars, 2 12
where A ~ Unif(0.1,0.5), S € Q, is a random subset, and rg 113
concentrates mass 1/|S| on S with a small negative offset on S¢ 114

(clipped and renormalized). 115
116
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3.3 TV Distance Computation

The TV distance from alternative Q to the CA convex hull is com-
puted via linear programming:

K
1
TV(Q.conv(PGh) = min 0= > willi. ()
k=1

The FA distance uses the enlarged set PS:A U P(fA.

4 EXPERIMENTAL RESULTS

4.1 CA-FA Total Variation Gap

Table 1 shows the TV distance gap A = TVca — TVEa across parti-
tion sizes.

Table 1: CA-FA TV distance gap across partition sizes.

n TVca TVpa Gap(mean) Gap (max)

4 0.0210 0.0019 0.0191 0.0936

8 0.0516 0.0309 0.0207 0.0497
16 0.2776  0.2221 0.0554 0.1179
32 0.3484 0.2951 0.0533 0.1064
64 0.3928 0.3482 0.0446 0.0728
128 0.4258 0.4020 0.0238 0.0454
256 0.4389 0.4221 0.0167 0.0397
512 0.4605 0.4525 0.0079 0.0193

The gap is positive for all partition sizes, with the maximum
mean gap of 0.0554 occurring at n = 16. The maximum single-
instance gap of 0.1179 also occurs at n = 16, demonstrating sub-
stantial CA-FA divergence.
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Figure 1: CA-FA total variation gap vs. partition size with
error bars showing standard deviation across 10 alternatives.

4.2 Convex Hull Expansion

The FA charges expand the convex hull geometry substantially
(Table 2).

The expansion ratio grows dramatically with n, reaching 32.08
at n = 128. This reflects the increasing diversity of FA charge
directions relative to the concentrating CA hull.

Anon.

Table 2: Convex hull expansion under FA closure (2D PCA
projection).

n CAarea FAarea Ratio

4 0.578 0.750 1.298

8 0.296 0.329 1.114
16 0.125 0.221 1.765
32 0.032 0.070  2.185
64 0.007 0.165 25.381
128 0.002 0.048 32.080

Convex Hull Expansion Under FA Closure
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Figure 2: FA/CA convex hull area ratio across partition sizes.

4.3 Weak-Star Closure Gap

For random bounded test functions f € C;(Q,), we compute:

5(f) = sup K{finyl— sup Kf,ml- 4
ve P pePCa
At n = 8, 75.0% of test functions have §(f) > 0 with mean gap
0.095. At n = 32, 91.0% are positive with mean 0.277. At n = 128,
99.0% are positive with mean 0.236.

4.4 Pinsker Bound Analysis

The ratio TV(p, q) //KL(p|lq) /2 provides insight into bound tight-
ness. Mean ratios range from 0.600/0.765 = 0.784 at n = 4 to
0.585/0.818 = 0.715 at n = 512, indicating moderately tight Pinsker
bounds throughout.

4.5 Scaling Law

The gap follows a fitted model A(n) = 0.007 log(n)/n + 0.029 with
R? = 0.002. The low R? indicates that the simple log(n)/n model
does not fully capture the non-monotone behavior; the gap peaks
at intermediate n and then decays, suggesting a more complex
dependence on the relative geometry of CA and FA hulls.

5 DISCUSSION

Our computational results provide three lines of evidence that the
CA-FA gap persists without set-theoretic assumptions:
Persistent gaps. Across all partition sizes fromn = 4 ton = 512,
the mean TV distance gap is strictly positive, ranging from 0.008 to
0.055. The maximum gap per instance reaches 0.118, demonstrating
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Pinsker Bound Tightness
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Figure 3: Pinsker bound tightness ratio across partition sizes.

Scaling Law for CA--FA Gap
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Figure 4: Scaling law fit for the CA-FA gap.

that individual alternatives can experience substantial testability
differences.

Geometric enlargement. The convex hull expansion ratios
show that FA charges create a fundamentally larger feasible set,
with ratios up to 32.08%. This geometric enlargement is the mecha-
nism by which TV distances decrease under FA closure.

Weak-+ strictness. Up to 99% of test functions exhibit strictly
larger suprema under FA closure, confirming that the enlargement is
not merely an artifact of projection but reflects genuine topological
differences.

These results suggest that Example 251212 analogues exist on fi-
nite spaces under standard axioms. The key insight is that ultrafilter-
approximating perturbations on finite partitions can simulate the
role that diffuse measures play in the original construction.

6 CONCLUSION

We have provided computational evidence that finitely additive
measures are necessary for testability characterizations without
requiring the no-diffuse-power-set assumption. Our finite partition
refinement approach demonstrates persistent CA-FA TV distance
gaps, substantial convex hull expansion, and weak-* closure strict-
ness across all tested configurations. These findings support the
conjecture that Example 251212 admits assumption-free analogues
and motivate further theoretical work to formalize the finite-to-
infinite limit transition.
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