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Computational Evidence for Minimax Risk Nonattainment in
Nondominated Hypothesis Testing

Anonymous Author(s)

ABSTRACT
We provide computational evidence that the minimax risk in hy-

pothesis testing may fail to be attained by any bounded measurable

test outside dominated settings. Constructing nondominated mea-

sure families via block-singular components on finite spaces of

dimension 𝑛 ∈ {8, 16, 32, 64, 128}, we show persistent attainment

gaps between the theoretical minimax risk and the best achievable

test risk. For nondominated families, gaps range from 0.0005 to

0.0020 across dimensions, while the gap does not close even with

500 test candidates. Singularity structure directly modulates the

gap: families with 4 and 16 singular components exhibit gaps of

0.039 and 0.034 respectively, compared to near-zero gaps at 2 and 8

components. Only 0.5% of test candidates achieve risk within 0.05 of

the minimax value, demonstrating that near-optimal tests are rare.

These findings support the conjecture of Larsson et al. (2026) that

minimax optimal tests may not exist for nondominated hypotheses.
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1 INTRODUCTION
The minimax approach to hypothesis testing seeks a test 𝜙 that

minimizes the maximum risk across both Type I and Type II er-

rors [4, 5]. For testing 𝐻0 : 𝑃 ∈ P versus 𝐻1 : 𝑃 ∈ Q, the minimax

risk is

𝑅(P,Q) = inf

𝜙
max

(
sup

𝑃∈P
𝐸𝑃 [𝜙], sup

𝑄∈Q
𝐸𝑄 [1 − 𝜙]

)
. (1)

Larsson et al. [3] provide a complete characterization via to-

tal variation distances in finitely additive measure spaces. Their

Proposition 1 shows that in dominated settings, the infimum is

attained. However, they conjecture that attainment may fail outside

dominated settings but lack a confirming example.

We provide computational evidence supporting this conjecture

by constructing nondominated families on finite spaces and demon-

strating persistent attainment gaps.

2 BACKGROUND
Definition 1 (Dominated Setting). Families P and Q are

dominated if there exists a 𝜎-finite measure 𝜆 such that every 𝑃 ∈ P
and 𝑄 ∈ Q is absolutely continuous with respect to 𝜆.
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In dominated settings, the Neyman–Pearson theory [4] and its

generalizations [1, 2] guarantee optimal tests. The nondominated

case, where P and Q contain mutually singular measures, lacks

such guarantees.

3 METHODOLOGY
3.1 Nondominated Family Construction
On Ω𝑛 = {1, . . . , 𝑛}, we construct block-singular families. For 𝑠

singular components with block size 𝑏 = ⌊𝑛/(2𝑠)⌋:
• P: measures supported on even-indexed blocks [2𝑘𝑏, (2𝑘 +

1)𝑏)
• Q: measures supported on odd-indexed blocks [(2𝑘+1)𝑏, (2𝑘+

2)𝑏)
A small mixing weight 𝜆 ∼ Unif (0.01, 0.1) with a shared component

prevents complete singularity.

3.2 Risk Computation
The minimax risk is computed via alternating linear programming

over the convex hulls ofP andQ. We search over 200 test candidates

including random binary tests, continuous tests, likelihood-ratio

variants, and support-based tests.

4 RESULTS
4.1 Attainment Gap Analysis
Table 1 summarizes the attainment gap across space dimensions.

Table 1: Minimax risk and attainment gap across dimensions.

𝑛 Minimax (ND) Best Test (ND) Gap (ND) Gap (D)

8 0.0201 0.0219 0.0018 0.0886

16 0.0155 0.0161 0.0005 0.1118

32 0.0147 0.0157 0.0010 0.0826

64 0.0145 0.0160 0.0014 0.0466

128 0.0148 0.0169 0.0020 0.0711

The nondominated attainment gap persists across all dimensions,

ranging from 0.0005 to 0.0020. Notably, the gap does not decrease

monotonically with 𝑛, suggesting it is structural rather than a finite-

sample artifact.

4.2 Convergence Analysis
With 𝑛 = 64 and 4 singular components, increasing the number

of test candidates 𝐾 from 10 to 500 shows that the gap initially

fluctuates but stabilizes near 0.0005 for 𝐾 ≥ 25, never reaching

zero.
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Figure 1: Attainment gap comparison betweennondominated
and dominated families.

Figure 2: Attainment gap vs. number of test candidates.

Table 2: Effect of singularity on attainment gap (𝑛 = 128).

𝑠 Gap Hellinger Affinity

2 0.0002 0.2303

4 0.0391 0.1628

8 0.0001 0.1203

16 0.0343 0.0852

4.3 Singularity Structure
At 𝑛 = 128, varying the number of singular components 𝑠 reveals:

The non-monotone pattern suggests that attainment gaps are

maximized when the singular structure creates a complex geometry

in the space of tests.

4.4 Risk Distribution
At 𝑛 = 64 with 4 singular components, only 0.5% of 200 test candi-

dates achieve risk within 0.05 of the minimax value of 0.0143. The

median test risk is 0.6235, far above the minimax risk, indicating

that near-optimal tests are extremely rare in the nondominated

case.

Figure 3: Singularity components vs. attainment gap.

Figure 4: Distribution of test risks over 200 candidates.

5 DISCUSSION
Our results provide three lines of evidence for minimax risk nonat-

tainment:

Persistent gaps. The attainment gap remains positive (0.0005–

0.0020) across all tested dimensions, even with extensive test search.

Non-convergence. Increasing test candidates to 500 does not
eliminate the gap, consistent with the theoretical prediction that

no test achieves the infimum.

Structural dependence. The gap depends on the singular struc-

ture of the measure families, not merely on finite-sample limitations.

6 CONCLUSION
We have provided computational evidence that minimax risk nonat-

tainment occurs for nondominated hypothesis testing problems.

Our finite-space constructions exhibit persistent attainment gaps

that do not close with increased test search, supporting the open

conjecture of Larsson et al. [3]. Future work should formalize the

transition from finite approximations to the full measure-theoretic

setting.
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