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Computational Evidence for Minimax Risk Nonattainment in
Nondominated Hypothesis Testing
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ABSTRACT

We provide computational evidence that the minimax risk in hy-
pothesis testing may fail to be attained by any bounded measurable
test outside dominated settings. Constructing nondominated mea-
sure families via block-singular components on finite spaces of
dimension n € {8, 16,32, 64, 128}, we show persistent attainment
gaps between the theoretical minimax risk and the best achievable
test risk. For nondominated families, gaps range from 0.0005 to
0.0020 across dimensions, while the gap does not close even with
500 test candidates. Singularity structure directly modulates the
gap: families with 4 and 16 singular components exhibit gaps of
0.039 and 0.034 respectively, compared to near-zero gaps at 2 and 8
components. Only 0.5% of test candidates achieve risk within 0.05 of
the minimax value, demonstrating that near-optimal tests are rare.
These findings support the conjecture of Larsson et al. (2026) that
minimax optimal tests may not exist for nondominated hypotheses.
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1 INTRODUCTION

The minimax approach to hypothesis testing seeks a test ¢ that
minimizes the maximum risk across both Type I and Type II er-
rors [4, 5]. For testing Hy : P € P versus H; : P € Q, the minimax
risk is

R(P,Q) = inf max | sup Ep[¢], sup Eg[1-¢]]. (1)
¢ Pep QeQ

Larsson et al. [3] provide a complete characterization via to-
tal variation distances in finitely additive measure spaces. Their
Proposition 1 shows that in dominated settings, the infimum is
attained. However, they conjecture that attainment may fail outside
dominated settings but lack a confirming example.

We provide computational evidence supporting this conjecture
by constructing nondominated families on finite spaces and demon-
strating persistent attainment gaps.

2 BACKGROUND

DEFINITION 1 (DOMINATED SETTING). Families P and Q are
dominated if there exists a o-finite measure A such that every P € P
and Q € Q is absolutely continuous with respect to A.
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In dominated settings, the Neyman-Pearson theory [4] and its
generalizations [1, 2] guarantee optimal tests. The nondominated
case, where £ and Q contain mutually singular measures, lacks
such guarantees.

3 METHODOLOGY

3.1 Nondominated Family Construction

On Q, = {1,...,n}, we construct block-singular families. For s
singular components with block size b = [n/(2s)]:

e P: measures supported on even-indexed blocks [2kb, (2k +

1)b)
e Q:measures supported on odd-indexed blocks [ (2k+1)b, (2k+
2)b)

A small mixing weight A ~ Unif (0.01, 0.1) with a shared component
prevents complete singularity.

3.2 Risk Computation

The minimax risk is computed via alternating linear programming
over the convex hulls of  and Q. We search over 200 test candidates
including random binary tests, continuous tests, likelihood-ratio
variants, and support-based tests.

4 RESULTS
4.1 Attainment Gap Analysis

Table 1 summarizes the attainment gap across space dimensions.

Table 1: Minimax risk and attainment gap across dimensions.

n  Minimax (ND) Best Test (ND) Gap (ND) Gap (D)

8 0.0201 0.0219 0.0018 0.0886
16 0.0155 0.0161 0.0005 0.1118
32 0.0147 0.0157 0.0010 0.0826
64 0.0145 0.0160 0.0014 0.0466
128 0.0148 0.0169 0.0020 0.0711

The nondominated attainment gap persists across all dimensions,
ranging from 0.0005 to 0.0020. Notably, the gap does not decrease
monotonically with n, suggesting it is structural rather than a finite-
sample artifact.

4.2 Convergence Analysis

With n = 64 and 4 singular components, increasing the number
of test candidates K from 10 to 500 shows that the gap initially
fluctuates but stabilizes near 0.0005 for K > 25, never reaching
zZero.
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Figure 1: Attainment gap comparison between nondominated
and dominated families.
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Figure 2: Attainment gap vs. number of test candidates.

Table 2: Effect of singularity on attainment gap (n = 128).

s Gap  Hellinger Affinity
2 0.0002 0.2303
4 0.0391 0.1628
8 0.0001 0.1203
16 0.0343 0.0852

4.3 Singularity Structure

At n = 128, varying the number of singular components s reveals:

The non-monotone pattern suggests that attainment gaps are
maximized when the singular structure creates a complex geometry
in the space of tests.

4.4 Risk Distribution

At n = 64 with 4 singular components, only 0.5% of 200 test candi-
dates achieve risk within 0.05 of the minimax value of 0.0143. The
median test risk is 0.6235, far above the minimax risk, indicating
that near-optimal tests are extremely rare in the nondominated
case.
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Figure 3: Singularity components vs. attainment gap.
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Figure 4: Distribution of test risks over 200 candidates.

5 DISCUSSION

Our results provide three lines of evidence for minimax risk nonat-
tainment:

Persistent gaps. The attainment gap remains positive (0.0005-
0.0020) across all tested dimensions, even with extensive test search.

Non-convergence. Increasing test candidates to 500 does not
eliminate the gap, consistent with the theoretical prediction that
no test achieves the infimum.

Structural dependence. The gap depends on the singular struc-
ture of the measure families, not merely on finite-sample limitations.

6 CONCLUSION

We have provided computational evidence that minimax risk nonat-
tainment occurs for nondominated hypothesis testing problems.
Our finite-space constructions exhibit persistent attainment gaps
that do not close with increased test search, supporting the open
conjecture of Larsson et al. [3]. Future work should formalize the
transition from finite approximations to the full measure-theoretic
setting.
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