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Scale-Dependent Classification of Einstein’s Field Theory
in the Statistical-Mechanical Hierarchy
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ABSTRACT
The placement of general relativity (GR) within the three-level hier-
archy of statistical mechanics—microscopic, mesoscopic, macroscopic—
remains an open problem highlighted by Maes (2026). We address
this question computationally using three complementary frame-
works: (i) the functional renormalization group (FRG) for quantum
Einstein gravity in the Einstein–Hilbert truncation, which tracks the
running of Newton’s constant 𝐺 (𝑘) and the cosmological constant
Λ(𝑘) across momentum scales; (ii) a thermodynamic classification
scheme based on a classicality parameter C(𝑘), spectral entropy
density 𝑠 (𝑘), and fluctuation-dissipation ratio 𝑅FD (𝑘); and (iii) the
Einstein–Langevin framework of stochastic gravity, which char-
acterizes the mesoscopic regime via noise and dissipation kernels.
Our numerical analysis reveals a scale-dependent classification:
GR is macroscopic for 𝑘 ≪ 𝑀Pl (classicality C ≫ 1, equilibrium
𝑅FD ≈ 1), mesoscopic near 𝑘 ∼ 𝑀Pl (C ∼ 1, 𝑅FD deviates from
unity), and potentially microscopic for 𝑘 ≫ 𝑀Pl (C ≪ 1). The
macro-to-meso crossover occurs at 𝑘/𝑘0 ≈ 2.23 and the meso-to-
micro crossover at 𝑘/𝑘0 ≈ 11.7 in our reference flow. Effective
field theory analysis confirms that quantum corrections become
comparable to classical post-Newtonian corrections at 𝑟𝑐 ≈ 0.80𝐿Pl.
We conclude that GR does not admit a single classification; instead,
the statistical-mechanical hierarchy must be generalized to accom-
modate scale-dependent theories. We provide open-source code
reproducing all results.

CCS CONCEPTS
• Computing methodologies→Modeling and simulation.

KEYWORDS
general relativity, statistical mechanics, renormalization group,
scale classification, asymptotic safety, stochastic gravity

1 INTRODUCTION
Statistical mechanics organizes physical theories into a three-level
hierarchy:microscopic dynamics (Hamiltonian mechanics, quantum
mechanics), mesoscopic descriptions (Langevin equations, Boltz-
mann transport), and macroscopic laws (thermodynamics, hydro-
dynamics). This stratification underpins the entire program of
nonequilibrium statistical physics, where one systematically derives
macroscopic behavior from microscopic laws through successive
coarse-graining steps [9].

Maes [9] recently highlighted a fundamental difficulty: not all
physical theories fit cleanly into this hierarchy. Gravity is the
paradigmatic example. Einstein’s general relativity (GR) exhibits
characteristics of all three levels simultaneously. As a set of deter-
ministic, time-reversible field equations for the metric tensor 𝑔𝜇𝜈 ,
GR resembles a microscopic theory. Yet Jacobson [8] showed that
the Einstein equations can be derived as an equation of state from

horizon thermodynamics, suggesting GR is macroscopic—an emer-
gent, coarse-grained description. Meanwhile, semiclassical gravity,
where quantum matter fields propagate on a classical curved back-
ground, occupies a mesoscopic role, capturing fluctuation effects
such as Hawking radiation without requiring a full quantum gravity
theory [7].

This ambiguity is not merely philosophical. The Maes nonequi-
librium framework [9] requires knowing the hierarchical level of
a theory before bridges to other levels can be constructed. If GR
is macroscopic, one seeks its microscopic underpinning (quantum
gravity). If microscopic, one must understand how thermodynamic
behavior emerges via coarse-graining.

In this work, we resolve the ambiguity by demonstrating that GR
does not possess a single, fixed classification. Instead, its position in
the hierarchy is scale-dependent: the same theory transitions from
macroscopic at infrared (IR) scales to mesoscopic and potentially
microscopic at ultraviolet (UV) scales. We quantify this transition
using three computational tools: the functional renormalization
group (FRG), thermodynamic classification criteria, and stochastic
gravity analysis.

1.1 Related Work
Thermodynamic gravity. Jacobson [8] derived the Einstein equa-

tions from the Clausius relation 𝛿𝑄 = 𝑇 𝑑𝑆 applied to local Rindler
horizons, treating 𝐺𝜇𝜈 = 8𝜋𝐺 𝑇𝜇𝜈 as an equation of state. Pad-
manabhan [11] extended this program, decomposing the Einstein–
Hilbert action into bulk and surface contributions, with the surface
term encoding thermodynamic content. Verlinde [17] proposed
gravity as an entropic force, further reinforcing the macroscopic
interpretation. These results position GR at the macroscopic level—
but leave open whether this is the complete description across all
scales.

Effective field theory. Donoghue [5] and Burgess [2] demon-
strated that GR can be treated as an effective field theory (EFT)
valid below the Planck scale. Leading one-loop quantum correc-
tions to the Newtonian potential were computed by Bjerrum-Bohr
et al. [1], showing that quantum effects become non-negligible
at distances 𝑟 ∼ 𝐿Pl. In the EFT framework, GR is a low-energy
(macroscopic) approximation whose UV completion is unknown.

Asymptotic safety. Reuter [13] proposed that gravity may be
nonperturbatively renormalizable through a UV fixed point—the
asymptotic safety scenario. The functional renormalization group
(FRG) provides the computational framework [4, 14, 18], tracking
the running of gravitational couplings across momentum scales
𝑘 . If asymptotically safe, GR extends to a microscopic theory at
𝑘 ≫ 𝑀Pl, with the classical regime emerging in the IR.

Stochastic gravity. Hu and Verdaguer [7] developed the Einstein–
Langevin framework, augmenting semiclassical gravity with sto-
chastic noise sourced by quantum stress-energy fluctuations.Martin
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and Verdaguer [10] computed the noise and dissipation kernels for
linearized perturbations. This framework provides a natural meso-
scopic description, analogous to Langevin dynamics in condensed
matter [3].

Induced gravity. Sakharov [15] showed that the Einstein–Hilbert
action arises as a one-loop quantum effect of matter fields, implying
that GR is an emergent (macroscopic) phenomenon. Sindoni [16]
reviewed emergent gravity approaches from condensed matter
analogs.

Our contribution unifies these perspectives into a single quantita-
tive framework, using the FRG to interpolate continuously between
the macroscopic, mesoscopic, and microscopic regimes.

2 METHODS
We employ three complementary computational approaches to
classify GR’s position in the statistical-mechanical hierarchy at
each momentum scale 𝑘 .

2.1 Functional Renormalization Group
We solve the FRG flow equations for quantum Einstein gravity
in the Einstein–Hilbert truncation [13, 14]. The effective average
action is

Γ𝑘 [𝑔] =
1

16𝜋𝐺𝑘

∫
𝑑4𝑥

√
𝑔 (2Λ𝑘 − 𝑅), (1)

where 𝐺𝑘 and Λ𝑘 are scale-dependent Newton’s constant and cos-
mological constant. We work with dimensionless couplings:

𝑔(𝑘) = 𝑘2𝐺𝑘 , 𝜆(𝑘) = Λ𝑘/𝑘2 . (2)

The beta functions in 𝑑 = 4 with the optimized (Litim) regulator
are [4]:

𝛽𝑔 =
𝑑𝑔

𝑑𝑡
= 2𝑔 + 𝐵1 (𝜆) 𝑔2, (3)

𝛽𝜆 =
𝑑𝜆

𝑑𝑡
= −2𝜆 +𝐴1 (𝜆) 𝑔, (4)

where 𝑡 = ln(𝑘/𝑘0) is the RG time and 𝐵1 (𝜆), 𝐴1 (𝜆) encode the
graviton, conformal-mode, and ghost loop contributions through
threshold functions:

𝐵1 (𝜆) =
1
6𝜋

[
5

(1 − 2𝜆)2
− 5

(1 − 2𝜆/3)2
− 4

]
, (5)

𝐴1 (𝜆) =
1
4𝜋

[
5

1 − 2𝜆 + 1
1 − 2𝜆/3 − 4

]
. (6)

The system admits a Gaussian fixed point (GFP) at 𝑔∗ = 𝜆∗ = 0
and, in the full treatment, a non-Gaussian fixed point (NGFP) at𝑔∗ >

0, 𝜆∗ > 0 [12, 13]. We integrate the flow equations numerically from
IR initial conditions (𝑔0, 𝜆0) = (0.02, 0.005) toward the UV using
a high-order Runge–Kutta method (RK45) with relative tolerance
10−10.

Matter fields modify the beta functions through additional loop
contributions. For 𝑁𝑠 scalars, 𝑁𝐷 Dirac fermions, and 𝑁𝑉 vec-
tors [6]:

𝐵1 → 𝐵1 +
𝑁𝑠

12𝜋 − 𝑁𝐷

6𝜋 + 𝑁𝑉

2𝜋 . (7)

2.2 Thermodynamic Classification Criteria
We define three scale-dependent quantities that collectively deter-
mine the hierarchical level:

Classicality parameter.

C(𝑘) = |1 − 2𝜆(𝑘) |
𝑔(𝑘) . (8)

When C(𝑘) ≫ 1, the saddle-point (classical) approximation dom-
inates and the theory is macroscopic. When C(𝑘) ∼ O(1), fluc-
tuations are comparable to the mean field (mesoscopic). When
C(𝑘) ≪ 1, the theory is fluctuation-dominated (microscopic). The
physical content is transparent: 1/𝑔 = 𝑀2

Pl/𝑘
2 measures the ratio

of the Planck scale to the RG scale, while |1 − 2𝜆 | measures the
distance from the cosmological singularity at 𝜆 = 1/2.

Spectral entropy density.

𝑠 (𝑘) =
𝑛phys 𝑘

4𝜋 𝑔(𝑘) |1 − 2𝜆(𝑘) |, (9)

where 𝑛phys = 2 counts the physical graviton polarizations. This
quantity measures the density of gravitational microstates at scale
𝑘 and is derived from the mode-counting interpretation of the
effective action [14].

Fluctuation-dissipation ratio. From the anomalous dimension
𝜂𝑁 = (𝑑 − 2) − 𝛽𝑔/𝑔, we define:

𝑅FD (𝑘) =
1

1 + 𝜂𝑁 (𝑘)/(𝑑 − 2) . (10)

In equilibrium (FDT satisfied), 𝑅FD = 1. At the NGFP, 𝜂𝑁 = 𝑑−2 = 2
gives 𝑅FD = 1/2, signaling that the UV theory is intrinsically out
of equilibrium—a connection to the Maes nonequilibrium frame-
work [9].

Classification thresholds. We adopt order-of-magnitude criteria:
C > 10 for macroscopic, 0.3 < C < 10 for mesoscopic, and C < 0.3
for microscopic.

2.3 Stochastic Gravity Analysis
The Einstein–Langevin equation [7, 10] augments semiclassical
gravity with a stochastic source:

𝐺𝜇𝜈 + Λ𝑔𝜇𝜈 = 8𝜋𝐺 ⟨𝑇𝜇𝜈 ⟩ + 8𝜋𝐺 𝜉𝜇𝜈 , (11)

where 𝜉𝜇𝜈 is a Gaussian stochastic tensor with correlator deter-
mined by the noise kernel 𝑁𝜇𝜈𝛼𝛽 . For a free massless scalar field in
the vacuum, the spectral noise kernel is [10]:

𝑁 (𝜔, k) = 1
960𝜋2

(𝜔2 − 𝑘2)2
|𝜔 | Θ(𝜔2 − 𝑘2), (12)

and the dissipation kernel is:

𝐷 (𝜔, k) = sgn(𝜔)
960𝜋 (𝜔2 − 𝑘2)2 Θ(𝜔2 − 𝑘2). (13)

At finite temperature𝑇 , the noise kernel is enhanced: 𝑁𝑇 = 𝑁0 (1 +
2𝑛𝐵 (𝜔)), where 𝑛𝐵 is the Bose–Einstein distribution. The spec-
tral FD ratio 𝑅(𝜔) = 𝑁 /(sgn(𝜔) 𝐷/2𝜋) equals 1 in the vacuum
and deviates at finite temperature, characterizing the mesoscopic
regime.
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Figure 1: Renormalization group flow of gravitational cou-
plings. (a) Running dimensionless Newton’s constant 𝑔(𝑘)
and cosmological constant 𝜆(𝑘) as functions of RG time
𝑡 = ln(𝑘/𝑘0). (b) Phase portrait showing multiple trajectories
in the (𝑔, 𝜆) plane. All trajectories flow from the Gaussian
fixed point (origin) toward larger couplings in the UV direc-
tion.

2.4 Effective Field Theory Crossover
We compute the quantum-corrected Newtonian potential [1, 5]:

𝑉 (𝑟 ) = −𝐺𝑀1𝑀2
𝑟

[
1 + 𝛼

𝐺 (𝑀1+𝑀2)
𝑟𝑐2

+ 𝛽
𝐺ℏ

𝑟2𝑐3
+ · · ·

]
, (14)

where 𝛼 = 3 is the classical (1PN) coefficient and 𝛽 = 𝛽grav +
𝛽matter is the one-loop quantum coefficient. For pure gravity, 𝛽grav =

41/(10𝜋) [1]. Including Standard Model matter (𝑁𝑠 = 4, 𝑁𝐷 =

45, 𝑁𝑉 = 12), the total coefficient is 𝛽total ≈ 2.40. The quantum-
classical crossover occurs at 𝑟𝑐 = 𝛽/(𝛼𝑀total).

3 RESULTS
3.1 RG Flow of Gravitational Couplings
Figure 1 shows the numerical solution of the FRGflow equations (3)–
(4). Starting from IR initial conditions (𝑔0, 𝜆0) = (0.02, 0.005), the
dimensionless Newton’s constant 𝑔(𝑘) grows monotonically from
0.02 toward ∼ 6.1 as the momentum scale increases (UV direction,
𝑡 → +∞), while the dimensionless cosmological constant 𝜆(𝑘)
increases from 0.005 toward 𝜆 → 0.45, approaching the singularity
at 𝜆 = 0.5.

The flow terminates at 𝑡 ≈ 2.65 (corresponding to 𝑘/𝑘0 ≈ 14.2)
due to the proximity of the 𝜆 = 1/2 singularity. The phase portrait
(Figure 1b) shows multiple trajectories in the (𝑔, 𝜆) coupling space,
all flowing from the Gaussian fixed point at the origin toward larger
couplings in the UV.

The growth of 𝑔(𝑘) reflects the increasing importance of quan-
tum gravitational fluctuations at shorter wavelengths: 𝑔 = 𝐺𝑘2

grows as 𝑘 increases even when 𝐺 is approximately constant (clas-
sical regime), and faster if 𝐺 itself runs.

3.2 Scale-Dependent Classification
Figure 2 presents the three thermodynamic classification criteria
as functions of the RG scale.

Classicality parameter (Fig. 2a). In the IR (𝑡 ≲ 0.80, 𝑘/𝑘0 ≲
2.23), C(𝑘) > 10, confirming that GR is macroscopic: the classical
saddle-point approximation dominates. In the intermediate regime

Figure 2: Scale-dependent classification of GR. (a) Classical-
ity parameter C(𝑘), color-coded by regime: blue = macro-
scopic (C > 10), orange = mesoscopic (0.3 < C < 10), red
= microscopic (C < 0.3). (b) Spectral entropy density 𝑠 (𝑘).
(c) Fluctuation-dissipation ratio𝑅FD (𝑘); the green bandmarks
near-equilibrium.

(0.80 ≲ 𝑡 ≲ 2.46), 0.3 < C < 10, identifying the mesoscopic
domain where quantum fluctuations of the metric are comparable
to the background. For 𝑡 ≳ 2.46 (𝑘/𝑘0 ≳ 11.7), C < 0.3: the theory
becomes microscopic (fluctuation-dominated).

Overall, 30.3% of the sampled flow lies in the macroscopic regime,
62.6% in the mesoscopic regime, and 7.1% in the microscopic regime.
The dominance of the mesoscopic regime reflects the logarithmic
nature of the RG time variable and the relatively rapid approach to
the 𝜆 = 1/2 singularity.

Spectral entropy density (Fig. 2b). The entropy density 𝑠 (𝑘) in-
creases with 𝑘 in the IR/mesoscopic regime (more modes are being
probed at higher 𝑘), then decreases as 𝑔(𝑘) grows rapidly in the UV.
This non-monotonic behavior reflects the competition between the
growing phase space (∝ 𝑘) and the strengthening of fluctuations
(∝ 1/𝑔).

Fluctuation-dissipation ratio (Fig. 2c). 𝑅FD (𝑘) starts near 1.0 in
the IR (equilibrium, FDT satisfied) and decreases toward ∼ 0.5 in the
UV, indicating increasing departure from thermal equilibrium. The
value 𝑅FD = 0.5 corresponds to 𝜂𝑁 = 2 (the anomalous dimension
at the NGFP in the full asymptotic safety scenario), confirming
that the UV regime is intrinsically nonequilibrium. This connects
directly to the Maes framework [9]: the breakdown of the FDT
signals the transition from a macroscopic (thermodynamic) to a
mesoscopic/microscopic description.

3.3 Stochastic Gravity Kernels
Figure 3 shows the noise and dissipation kernels computed from
the Einstein–Langevin framework for a massless scalar field.

The spectral noise kernel 𝑁 (𝜔, 𝑘) vanishes below the light-cone
threshold (𝜔 < 𝑘) and grows as (𝜔2 − 𝑘2)2 above it, reflecting the
phase space for on-shell stress-energy fluctuations. At finite tem-
perature, the Bose–Einstein enhancement factor (1+2𝑛𝐵) amplifies
the noise kernel, particularly at low frequencies.

The spectral FD ratio (Fig. 3b) equals 1.0 in the vacuum (𝑇 = 0),
confirming that the vacuum state satisfies the FDT exactly. At fi-
nite temperature, 𝑅FD (𝜔) = coth(𝜔/2𝑇 ), which diverges at low
frequencies—characteristic of a classical thermal state. The depar-
ture from 𝑅FD = 1 quantifies the degree to which the system is in a
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Figure 3: Stochastic gravity analysis for a massless scalar
field (|k| = 0.5𝑀Pl). (a) Normalized noise kernel at tempera-
tures𝑇 = 0, 0.3, 0.7, 1.0𝑀Pl and dissipation kernel. (b) Spectral
fluctuation-dissipation ratio; 𝑅FD = 1 in the vacuum (equilib-
rium).

Figure 4: EFT crossover analysis. (a) Ratio of classical (1PN)
and quantum (one-loop) corrections to the Newtonian po-
tential; they cross at 𝑟𝑐 ≈ 0.80𝐿Pl. (b) Crossover radius as a
function of total mass; it scales as 𝑟𝑐 ∝ 1/𝑀 .

mesoscopic (thermally excited) regime rather than the microscopic
vacuum.

3.4 EFT Quantum-Classical Crossover
Figure 4 presents the effective field theory analysis. The magnitude
of the quantum correction |𝛿𝑉𝑞/𝑉𝑁 | = 𝛽/𝑟2 exceeds the classical
post-Newtonian correction |𝛿𝑉1PN/𝑉𝑁 | = 𝛼𝑀/𝑟 at the crossover
radius 𝑟𝑐 ≈ 0.80𝐿Pl for Planck-mass objects. For astrophysical
objects (𝑀 ∼ 𝑀⊙ ∼ 1038𝑀Pl), the crossover is pushed to 𝑟𝑐 ∼
10−38 𝐿Pl, deep in the sub-Planckian regime.

This confirms that for all physically accessible distance scales,
GR is firmly macroscopic. The mesoscopic regime (where quantum
corrections are non-negligible but do not dominate) is confined to
𝑟 ∼ O(1–10) 𝐿Pl.

3.5 Matter-Coupling Dependence
Figure 5 shows how the RG flow and classification depend on the
matter content. Adding scalar fields increases the rate of growth of
𝑔(𝑘) (stronger UV running), while Dirac fermions have the opposite
effect (they contribute with opposite sign to the graviton anomalous
dimension). A Standard Model-like matter content (𝑁𝑠 = 4, 𝑁𝐷 =

12, 𝑁𝑉 = 4) produces intermediate behavior.
The crossover scales shift accordingly: more scalars push the

macro-to-meso transition to lower 𝑘 (earlier onset of quantum

Figure 5: Matter-coupling dependence. (a) Running 𝑔(𝑘) for
pure gravity and with different matter content. (b) Classical-
ity parameter C(𝑘) for the same configurations.

Table 1: Summary of scale-classification results.

Quantity Value

Initial 𝑔0 (IR) 0.020
Initial 𝜆0 (IR) 0.005
Final 𝑔 (UV terminus) 6.13
Final 𝜆 (UV terminus) 0.446
RG time range 𝑡 [0, 2.65]
Macro-to-meso crossover 𝑘/𝑘0 2.23
Meso-to-micro crossover 𝑘/𝑘0 11.7
Macroscopic fraction 30.3%
Mesoscopic fraction 62.6%
Microscopic fraction 7.1%
FD ratio (IR) ≈ 1.0
FD ratio (UV) ≈ 0.5
EFT crossover 𝑟𝑐 (𝑀 = 𝑀Pl) 0.80𝐿Pl
EFT 𝛽total 2.40

effects), while fermions delay it. This demonstrates that the scale
classification is not universal but depends on the matter content of
the theory—a fact relevant for realistic cosmological and particle
physics scenarios.

3.6 Summary of Quantitative Results
Table 1 summarizes the key numerical results.

4 LIMITATIONS AND ETHICAL
CONSIDERATIONS

Truncation dependence. Our FRG analysis employs the Einstein–
Hilbert truncation (1), the simplest approximation to the full grav-
itational effective action. Higher-order truncations including 𝑅2,
𝑅𝜇𝜈𝑅

𝜇𝜈 , and higher-derivative terms may modify the quantitative
crossover scales and the existence and location of UV fixed points [4,
12]. The qualitative three-regime structure (macroscopic/mesoscopic/microscopic)
is expected to persist, but the precise crossover scales should be
treated as order-of-magnitude estimates.
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Regulator dependence. The FRG flow depends on the choice of
regulator (here, the Litim optimized cutoff). While fixed-point exis-
tence is regulator-independent in exact computations, the truncated
beta functions introduce regulator artifacts. We do not perform a
systematic regulator comparison in this work.

Euclidean signature. The FRG computation is performed in Eu-
clidean signature. The analytic continuation to Lorentzian signa-
ture, required for a genuine nonequilibrium analysis, introduces
subtleties [3]. Our fluctuation-dissipation ratio analysis is therefore
indicative rather than rigorous.

Classification thresholds. The thresholdsCmacro = 10 andCmicro =

0.3 are order-of-magnitude choices. A more refined classification
would require a formal criterion, such as the onset of irreversibility
or the emergence of an entropy functional.

Observational inaccessibility. The crossover scales are near the
Planck length (∼ 10−35 m), far beyond current experimental reach.
Indirect signatures in cosmological perturbation spectra or black
hole quasinormal modes remain speculative.

Ethical considerations. This work is purely theoretical and com-
putational, with no direct societal impact. We note the general ethi-
cal obligation to communicate theoretical physics results accurately
and avoid overstating the observational relevance of Planck-scale
phenomena. All code and data are released openly to support re-
producibility. We used AI-assisted tools in the preparation of this
manuscript and code, which we disclose in the interest of trans-
parency.

5 CONCLUSION
We have addressed the open problem posed by Maes [9]: whether
Einstein’s general relativity should be classified as microscopic or
macroscopic within the statistical-mechanical hierarchy.

Our analysis, combining functional renormalization group com-
putations, thermodynamic classification criteria, and stochastic
gravity analysis, yields a clear answer: GR is scale-dependent in its
classification.At infrared scales (𝑘 ≪ 𝑀Pl), where the dimensionless
Newton’s constant is small (𝑔 ≪ 1), GR is macroscopic—it is well
described by the classical saddle-point approximation, satisfies the
fluctuation-dissipation theorem, and admits a thermodynamic inter-
pretation consistent with Jacobson’s derivation [8]. Near the Planck
scale (𝑘 ∼ 𝑀Pl), the theory enters a mesoscopic regime where quan-
tum fluctuations of the metric are comparable to the classical back-
ground, the FDT is violated, and the Einstein–Langevin (stochastic
gravity) description [7] is required. At trans-Planckian scales, the
theory becomes microscopic (fluctuation-dominated).

The EFT analysis confirms that the quantum-classical crossover
occurs at 𝑟𝑐 ≈ 0.80𝐿Pl for Planck-mass objects, with the crossover
radius scaling as 𝑟𝑐 ∝ 1/𝑀total and becoming astronomically small
for astrophysical objects.

This resolution has implications for the Maes nonequilibrium
program [9]:

(1) The three-level hierarchy must be generalized to accommo-
date scale-dependent theories where the same degrees of
freedom change their statistical character across scales.

(2) At macroscopic scales, GR serves as an equation of state
(analogous to Euler equations), and nonequilibrium physics
enters through matter fields on the curved background.

(3) At mesoscopic scales, the geometry itself fluctuates, and
entropy production and fluctuation theorems must be for-
mulated for the combined metric-matter system.

(4) At microscopic scales, the full quantum gravity path inte-
gral defines the fundamental dynamics from which both
mesoscopic andmacroscopic descriptions emerge via coarse-
graining.

Future work should extend the FRG analysis to higher trun-
cations, perform the Lorentzian continuation, and connect the
crossover scales to potentially observable cosmological signatures.
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