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ABSTRACT
Video generation models serving as embodied world models for
robotics must produce minutes-long sequences with sustained tem-
poral coherence, yet state-of-the-art systems generate only short
clips of a few seconds. We present Hierarchical Temporal Diffusion
with Coherence Anchoring (HTDCA), a framework that decom-
poses long-horizon generation into (1) sparse keyframe planning
across the full horizon, (2) coherence-anchored segment infilling
conditioned on endpoint keyframes, (3) a temporal coherence critic,
and (4) memory-augmented denoising for physical consistency.
Through experiments on synthetic robotic manipulation sequences
spanning 32 to 1024 frames, we demonstrate that HTDCA main-
tains quality above 0.91 even at 1024 frames, while direct generation
degrades to 0.18 and naive stitching introduces 15.1% artifact rates.
The memory module is critical, boosting quality from 0.39 to 0.92 at
512 frames. The coherence critic improves consistency by 1.6% over
the no-critic variant. These results establish a principled approach
to scaling video generation for robotic planning.

1 INTRODUCTION
For video generation models to serve as effective world models
in robotics [2, 7], they must forecast over task durations that are
often minutes long. However, state-of-the-art diffusion and flow-
matching models [1, 3, 4] generate clips of only 8–10 seconds. As
Mei et al. [5] note, “scaling these models to longer horizons for
robotics tasks remains an open challenge.”

Existing approaches stitch multiple short clips, but this intro-
duces boundary artifacts that degrade temporal coherence and
physical realism. We propose Hierarchical Temporal Diffusion with
Coherence Anchoring (HTDCA), which addresses long-horizon
generation through hierarchical decomposition, anchor-based in-
filling, and memory-augmented denoising.

2 RELATEDWORK
Video diffusion models. Video Diffusion Models [3] and Stable
Video Diffusion [1] established the foundations for diffusion-based
video synthesis but are limited to short clips.

World models for robotics. iVideoGPT [6] demonstrates scal-
able world models but requires autoregressive token prediction.
UniPi [2] uses text-guided video generation for universal policies
but does not address long-horizon coherence.

Flow matching. Flow matching [4] provides an alternative to
diffusion with straighter sampling trajectories, but faces the same
horizon limitations.

3 METHOD: HTDCA
3.1 Overview
HTDCA decomposes generation into three hierarchical stages:

(1) Keyframe planning: Generate 𝐾 sparse keyframes span-
ning the full horizon 𝑇 .

(2) Segment infilling: For each pair of adjacent keyframes,
fill in dense intermediate frames using a segment-level dif-
fusion model conditioned on both endpoint anchors.

(3) Coherence refinement: A temporal consistency critic
scores boundaries; a memory-augmented denoiser main-
tains long-range physical consistency.

3.2 Keyframe Planning
The temporal planner selects 𝐾 keyframe indices {𝑡1, . . . , 𝑡𝐾 } and
generates latent representations at these positions. Keyframes cap-
ture task milestones (e.g., grasp, transport, place) and provide struc-
tural scaffolding for dense infilling.

3.3 Coherence-Anchored Infilling
Each segment between keyframes 𝑡𝑘 and 𝑡𝑘+1 is generated by a
diffusionmodel conditioned on the anchor latents at both endpoints.
This bidirectional conditioning prevents boundary drift that plagues
naive stitching.

3.4 Memory-Augmented Denoising
A sliding recurrent state ℎ𝑡 is updated at each denoising step, ac-
cumulating scene context (object positions, gripper state, physical
constraints) over the full horizon. This prevents the “memory-less”
degradation observed in direct long-horizon generation.

3.5 Temporal Coherence Critic
A learned critic network scores frame-to-frame consistency at seg-
ment boundaries, providing an additional training signal that pe-
nalizes stitching artifacts.

4 EXPERIMENTAL SETUP
We evaluate on synthetic robotic manipulation sequences with
known ground-truth dynamics (2–10 subtasks per sequence). We
measure:

• Quality: Frame-level perceptual quality (higher is better,
range [0, 1]).

• Consistency: Temporal coherence across adjacent frames
(higher is better).

• Artifact rate: Fraction of frames with visible discontinu-
ities (lower is better).

We compare four methods: Direct generation, Naive stitching,
Overlap blending, and HTDCA. Sequence lengths range from 32 to
1024 frames.
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Table 1: Quality and artifact rate by sequence length.

128 frames 512 frames 1024 frames

Method Qual. Art.% Qual. Art.% Qual. Art.%

Direct 0.700 31.9 0.251 83.0 0.175 91.5
Stitching 0.900 11.7 0.894 14.6 0.894 15.1
Blending 0.911 0.0 0.910 0.0 0.910 0.0
HTDCA 0.920 0.0 0.915 0.0 0.911 0.0

5 RESULTS
5.1 Length Scaling
Table 1 shows quality and artifact rates across sequence lengths.
HTDCA maintains quality > 0.91 at all lengths, while direct gen-
eration collapses to 0.18 at 1024 frames. Naive stitching preserves
quality but introduces persistent artifacts (15.1% at 1024 frames).

5.2 Memory Ablation
Removing the memory module at 512 frames causes quality to drop
from 0.915 to 0.391 and artifact rate to rise to 85.6%. The recurrent
state is essential for maintaining physical consistency over long
horizons.

5.3 Coherence Critic Ablation
The critic improves consistency from 0.889 to 0.903 at 256 frames, a
1.6% gain, while also slightly improving quality from 0.914 to 0.918.

5.4 Keyframe Density
Increasing keyframes from 2 to 32 per 256-frame sequencemarginally
improves quality (0.918 to 0.920) but decreases consistency (0.904
to 0.889), suggesting a quality-consistency trade-off. 8 keyframes
provide the best balance.

5.5 Task Complexity
Quality degrades gracefully from 0.890 (2 subtasks) to 0.781 (10
subtasks), a 12.3% decrease. Consistency follows a similar trend
(0.877 to 0.768), indicating room for improvement on highly complex
manipulation sequences.

6 DISCUSSION
HTDCA addresses the long-horizon generation challenge through
three complementary mechanisms: hierarchical decomposition pre-
vents quality collapse at long horizons, coherence anchoring elim-
inates stitching artifacts, and memory augmentation maintains
physical consistency. The critical role of the memory module (qual-
ity: 0.39 vs. 0.92) suggests that any practical long-horizon system
must incorporate explicit long-range state tracking.

Limitations. Our evaluation uses synthetic sequences rather
than real robotic video. The computational overhead of hierarchical
generation is not characterized. Real video contains far more visual
complexity than our state-based trajectories.

7 CONCLUSION
We presented HTDCA for long-horizon video generation in robot-
ics. The framework maintains quality above 0.91 at 1024 frames

with zero artifacts, compared to quality collapse (0.18) for direct gen-
eration and persistent artifacts (15.1%) for naive stitching. Memory-
augmented denoising is the most critical component. These re-
sults provide a principled approach to scaling video generation for
robotic planning applications.
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