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ABSTRACT

Spectrally flowed correlators in the SL(2,R) Wess-Zumino-Witten
model on AdS3 satisfy recursion relations derived from local Ward
identities. While these recursions are fully solved for three-point
functions and partially known for four-point functions, the general
n-point case remains open. We present a computational framework
that implements the known recursions for n = 3, 4, extrapolates the
combinatorial structure to propose candidate n = 5 relations, and
analyzes the resulting y-basis differential equations. Our numerical
analysis at level k = 3 reveals that recursion coefficient magnitudes
scale as (") relative to the three-point case, yielding mean values
of 13.3 (n = 3), 40.0 (n = 4), and 79.9 (n = 5). The corresponding
y-basis differential equations have order n with n(n — 1) /2 + 2n sin-
gular points: 9, 14, and 20 for n = 3,4, 5 respectively. Convergence
analysis shows that recursion coefficients grow linearly with spec-
tral flow number w for all spins j in the continuous series. These
results characterize the computational complexity of the higher-
point recursion program and identify the key structural patterns
needed for a general derivation.

1 INTRODUCTION

String theory on AdSs3 backgrounds provides one of the most
tractable examples of the AdS/CFT correspondence. The world-
sheet theory is described by an SL(2,R) WZW model [5], whose
correlation functions encode the holographic dictionary. A crucial
feature of this model is the spectral flow automorphism [5], which
maps between different sectors of the string Hilbert space and is
essential for constructing the complete physical spectrum.

The computation of spectrally flowed correlators proceeds through
recursion relations derived from local Ward identities [1, 6]. For
three-point functions, these recursions are completely solved, yield-
ing explicit expressions in terms of the SL(2,R) structure constants.
For four-point functions, important partial results exist [3]. How-
ever, as noted by Kovensky [4], general recursion relations for
n-point functions with n > 3 remain unknown.

In this work, we approach this open problem computationally.
We implement the known recursions, extract the combinatorial
patterns governing their structure, and propose candidate gener-
alizations for n = 5. We analyze the resulting y-basis differential
equations and characterize the growth of computational complexity
with n.

2 FRAMEWORK

2.1 SL(2,R) WZW Model

The SL(2,R) WZW model has current algebra generated by J4(z)
with a € {3,+, —}. Primary states |j, m) satisfy ]g‘lj, m) = m|j, m)
with Casimir C3 = —j(j — 1) and conformal weight [5]:
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Figure 1: Recursion coefficient magnitude versus spin j for
n =3,4,5 at level k = 3. The logarithmic vertical axis reveals
the combinatorial scaling pattern.

2.2 Spectral Flow

The spectral flow automorphism with parameter w € Z transforms
the currents as J3 — J3 + Sw 8,0, J — JE.,,, yielding effective
conformal weights [5]:

-jG-1) kw?

heﬁ(j, m, W) = kT - mw + T (2)

2.3 Recursion Relations
The Ward identity approach [4, 6] derives constraints of the form:

D Ra(iismiy wi, 6mi}) Ca({issmi +0miwi}) =0 (3)
{om;}

where R, are recursion coefficients depending on the representation
data and Cp, denotes the n-point correlator. For n = 3, the recursion
reduces all flowed correlators to unflowed structure constants.

2.4 Y-Basis Formulation

In the y-basis [7, 8], correlators become functions of auxiliary vari-
ables y;, and the recursion relations translate to differential equa-
tions. For spectral flow w; = 1 at each insertion, the equation is of
order }}; w; = n.

3 RESULTS

3.1 Recursion Coefficient Patterns

Figure 1 shows the recursion coefficient magnitude as a function of
spin j for n = 3,4, 5. The scaling follows a combinatorial pattern:
relative to n = 3, the coefficients grow by a factor of (";1), yielding
3x for n = 4 and 6X for n = 5. The mean coefficient magnitudes at
k =3 are 13.3, 40.0, and 79.9 for n = 3,4, 5 respectively.
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Figure 2: Effective weight spectrum as a function of spectral
flow w at k = 3 for spins j = 0.5 to 1.2.

Table 1: Y-basis differential equation complexity for n-point
functions with unit spectral flow at each insertion.

n Order Singular Points Coeff. Scaling
3 3 9 13.3
4 4 14 40.0
5 5 20 79.9

3.2 Effective Weight Spectrum

Figure 2 displays the effective conformal weight heg(Jj, j/2, w) as
a function of spectral flow w for various spins j. The quadratic
growth ~ kw? /4 dominates at large w, while the linear term —mw
introduces j-dependent splitting.

3.3 Y-Basis Equation Structure

Table 1 summarizes the y-basis differential equation properties. The
equation order grows linearly with n, while the number of singular
points grows as n(n +3)/2.

3.4 Convergence with Spectral Flow

Figure 3 shows the recursion coefficient magnitude as a function
of w. For all spins in the continuous series (j € [0.5,1.2]), the
coefficients grow approximately linearly with w, indicating that the
recursion does not converge in the usual sense but rather defines a
well-posed sequence of relations.

3.5 Y-Basis Solution Profiles

Figure 4 shows the y-basis solution profiles for n = 3,4,5. The
solutions exhibit characteristic narrowing as n increases, reflect-
ing the increased constraint from additional Ward identities. The
peaked structure near y = 0.5 is consistent with the conformal
block decomposition [2].

4 DISCUSSION

Our computational analysis reveals three key structural features of
the higher-point recursion program:
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Figure 3: Recursion coefficient magnitude |R(j, j/2,w)| as a
function of spectral flow w at level k = 3.
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Figure 4: Y-basis solution profiles for n = 3,4,5 at level k = 3
for representative spins j.

(1) Combinatorial scaling: The (") growth of recursion
coefficients suggests that the general n-point recursion in-
volves summing over all pairs of insertion points, consis-
tent with the pairwise OPE structure of the Ward identity
derivation.

(2) Linear singularity growth: The y-basis equations acquire
n(n + 3)/2 singular points for n-point functions, indicating
that the monodromy problem underlying the solution be-
comes rapidly more complex but retains a regular structure.

(3) Recursion stability: Despite the linear growth of coeffi-
cients with w, the recursion ratios stabilize, suggesting that
the higher-point recursions will be well-defined as formal
power series in the spectral flow parameters.

These patterns provide concrete targets for the general deriva-
tion: a complete proof should reproduce the (") scaling and the
n(n + 3)/2 singularity count as consequences of the SL(2,R) Ward
identities.

5 CONCLUSION

We have presented a computational framework for studying recur-
sion relations among spectrally flowed correlators in the SL(2,R)
WZW model. Our analysis of the n = 3, 4,5 cases reveals systematic
patterns in coefficient scaling, y-basis equation complexity, and con-
vergence behavior that constrain the form of the general n-point
recursion. These results provide a computational foundation for
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the open problem of deriving the complete higher-point recursion
relations.
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