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ABSTRACT

Neural network field theories (NN-FTs) provide a universal frame-
work for representing Euclidean quantum field theories, yet it re-
mains an open problem which NN-FTs satisfy the Osterwalder—
Schrader (OS) axioms required for physical consistency. We present
a systematic computational investigation of OS axiom compliance
across three families of NN-FT architectures in dimensions d > 2:
Gaussian NN-FTs with neural network kernel corrections, layered
architectures with transfer operator structure, and interacting ¢*-
type theories. Using lattice discretization, Kallén-Lehmann spectral
analysis, and Monte Carlo estimation of Schwinger functions, we
verify all five OS axioms numerically. For Gaussian NN-FTs, we
demonstrate that the standard free-field propagator and corrections
proportional to p? preserve reflection positivity, while momentum-
dependent softplus and oscillatory corrections violate it. We scan
1,271 points in the neural network correction parameter space,
finding that 5.1% satisfy reflection positivity, with the admissible
region forming a structured subset concentrated around linear mo-
mentum corrections. Dimensional scaling analysis reveals that the
RP-admissible fraction increases from 7.7% in d = 2 to 86.7% in
d = 4. For interacting theories, we verify OS axioms for ¢* cou-
plings A € [0, 5] with up to 20,000 Monte Carlo samples. Our results
provide the first computational characterization of the physically
admissible subset of NN-FTs and identify concrete architectural
conditions for OS compliance.
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1 INTRODUCTION

Neural networks and quantum field theory (QFT) share deep struc-
tural connections: in the infinite-width limit, neural networks with
random parameters define Gaussian processes that are analogous to
free-field theories [12, 15], and neural network field theories (NN-
FTs) provide a universal representation of Euclidean QFTs [5, 6].
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Ferko et al. [2] recently proved a universality theorem establish-
ing that any Euclidean QFT—modeled as a probability distribution
on the space of tempered distributions S’ (R?)—admits a neural
network representation with countably many parameters.

However, universality alone does not ensure physical consis-
tency. Euclidean QFTs must satisfy the Osterwalder—Schrader (OS)
axioms [13, 14] to guarantee analytic continuation to a unitary
Lorentzian theory via the OS reconstruction theorem. While mech-
anisms for engineering reflection positivity (the most subtle OS
axiom) are known in one dimension [1, 9], extending these results
to d > 2 remains an open problem identified explicitly in [2].

This work provides the first systematic computational investiga-
tion of OS axiom compliance across NN-FT architectures in d > 2.
Our contributions are:

(1) Direct lattice verification. We implement and validate
lattice-based checks for all five OS axioms (regularity, Eu-
clidean covariance, reflection positivity, symmetry, and clus-
tering) applied to NN-FTs.

(2) Gaussian NN-FT characterization. We demonstrate that
corrections of the form f(p?) = a - p? preserve reflec-
tion positivity (RP) via the Kéllén-Lehmann representation,
while nonlinear momentum-dependent corrections (soft-
plus, oscillatory) can violate it.

(3) Architecture space mapping. Scanning 1,271 parameter
configurations, we find that 5.1% are RP-admissible in d = 2,
and this fraction increases dramatically with dimension.

(4) Interacting theory verification. We verify all OS axioms
for p* NN-FTs at couplings up to A = 5.0, consistent with
constructive QFT results.

1.1 Related Work

Neural network field theories. The connection between neural
networks and field theory was formalized in [5], showing that NN
architectures define statistical field theories. Hashimoto et al. [6]
studied non-Gaussian NN-FTs arising from finite-width corrections.
The universality theorem of [2] established that NN-FTs can repre-
sent any Euclidean QFT.

OS axioms and constructive QFT. The OS axioms [13, 14]
provide the bridge between Euclidean and Lorentzian QFT. Con-
structive verification of these axioms for interacting models was
achieved by Glimm-Jaffe [3, 4] for ¢* in d = 2,3 and by Simon [16]
for P(¢)2 models. Lattice reflection positivity and transfer matrix
methods are reviewed in [10, 11].

Neural network quantum states. Neural quantum states [1]
use variational neural network ansitze. Lei and Bhatt [9] studied
the completeness of deep NN representations for reflection-positive
processes in d = 1.
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2 METHODS

2.1 Problem Formulation

A neural network field theory is specified by an architecture ¢y :
RY 5> Randa parameter measure P(6). The induced field measure
generates Euclidean Green’s functions (Schwinger functions):

St o) = / 0o() - polan) dP(O). (1)

We verify the five OS axioms (OS0-0OS4) for three families of NN-
FTs on periodic lattices of extent 4.

2.2 OS Axioms on the Lattice

0S80 (Regularity). We verify that all Schwinger function matrix
entries are finite: max; j Sz (x;, x;)| < co.

0S1 (Euclidean Covariance). On the periodic lattice, we check
translation invariance: Sz (x, y) depends only on x — y mod L. We
compute the coefficient of variation across translations for each
displacement and require max CV < 0.2.

082 (Reflection Positivity). For reflection ® : xp — —xp in
the Euclidean time direction, we construct the RP matrix R, =
S2(xq, ©xp) restricted to sites in the positive half-space {xy > 0}
and check positive semi-definiteness: Apin (R) > 0.

083 (Symmetry). We verify Sy(x,y) = S2(y,x) to tolerance
107,

084 (Cluster Property). We check that |S2(0, x)| decays with
|x|: the mean correlator at distances > L/3 is smaller than at dis-
tances < L/4.

2.3 Gaussian NN-FT Analysis

For Gaussian NN-FTs, the field measure is fully characterized by
the two-point function C(x, y) = (¢(x)¢(y)). We parameterize the
momentum-space propagator as:

A 1

O @
where p? = 2 2(1—cos py) is the lattice momentum and f(p?)isa
neural network correction. We consider f(p?) = a - softplus( - p?)
with parameters (a, f3).

Direct lattice RP check. We work in a mixed representation:
momentum in spatial directions, position in the temporal direction.
For each spatial momentum sector p_, the temporal propagator
defines a covariance matrix C(x, x(’); p.), from which we construct
the RP matrix Ry, = C(xg, Oxp;p) for x4,x; > 0 and verify
Amin (R) 2 0.

Killén-Lehmann analysis. A Gaussian theory is RP if and only
if its propagator admits a Kallén-Lehmann representation [7, 8]:

) 2
o= [ 5  an,

> 0. 3
Zrm? p= ®)

We solve the non-negative least squares (NNLS) problem min, > [|Ap—

C||? where Ajj = 1/(}612 + m?) with 100 mass values.

Anon.

2.4 Transfer Operator Analysis

For layered NN-FTs with depth aligned to Euclidean time, the trans-
fer matrix element between field configurations is:

2
T(@out. Pin) = €Xp (—%Ilqoout —e(Woin)1* = Z-llpoutll? - %Iltpoutll4),

4)
where o is an activation function (linear, ReLU, tanh, softplus)
and W is the weight matrix. We test both unconstrained W and
the positivity-enforced form W = VTV. The transfer matrix is
discretized on a field grid of 17 values in [-3.5,3.5], and RP corre-
sponds to all eigenvalues of the symmetrized T being non-negative.

2.5 Interacting NN-FT Analysis

For interacting theories, we define the measure dy = exp(—V [¢]) duo
where y is the free Gaussian measure with covariance Cgee =
(=A+m?)~Land V[g] = (1/4!) 3, ¢(x)*. We compute Schwinger
functions via importance sampling:

(e Vo

SZ (X', y) = > (5)

using n = 20,000 samples from y with reweighting. We monitor
the effective sample size neg = 1/3; wi2 (where w; are normalized
weights) to assess statistical quality.

3 RESULTS

3.1 Gaussian NN-FT Reflection Positivity

Table 1 summarizes the direct lattice RP check for Gaussian NN-FTs
on a 10? lattice with m? = 1.0. The free scalar field propagator
(f = 0) is confirmed to be reflection positive with Ay, ~ —10716
(machine zero). The quadratic correction f(p?) = 0.2p? also pre-
serves RP—this is expected since it simply rescales the effective
mass, maintaining the Kéllén-Lehmann form. Notably, the nega-
tive linear correction f(p?) = —0.3p?, which reduces the effective
momentum-dependent mass but keeps the propagator positive, also
satisfies RP.

In contrast, the softplus corrections f(p?) = 0.5-softplus(p?) and
f(p?) = 0.1 softplus(0.5p?) violate RP with minimum eigenvalues
—3.0x1073 and —3.4x 10~4, respectively. The oscillatory correction
f(p?) = 0.55sin(p?) shows the strongest violation (A, = —6.1 X
1073).

A key finding is that corrections proportional to p? (whether
positive or negative, as long as the propagator denominator remains
positive) preserve RP because the modified propagator 1/(c - p? +
m’?) retains the Killén-Lehmann form as a single-mass spectral
density. The nonlinear softplus correction breaks this structure by
introducing a nontrivial momentum dependence that cannot be
decomposed into a positive superposition of massive propagators.

Figure 1 shows the Kéllén-Lehmann spectral density for three
representative cases: the free field shows a localized spectral weight
near m?> = 1; the positive softplus correction concentrates the
weight but with a poor NNLS fit (residual 0.017); and the strong
negative correction shifts the spectral weight to higher masses
while maintaining the KL form.
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Table 1: Reflection positivity (RP) of Gaussian NN-FTs on a
102 lattice with m? = 1.0. The “Direct” column reports A, of
the RP matrix across all spatial momentum sectors. The “KL
Residual” column gives the relative residual of the Killén—
Lehmann NNLS fit. Corrections that introduce nonlinear
momentum dependence violate RP even when the propagator
remains positive.

Correction f(p?) RP Amin KL Res. Np>0
None (free field) v —10716 2.8x107° 2
0.2 - p? v —-10716 4.2x107° 2
-0.3 - p? v -10716 3.2x1078 2
-0.8 - p? v —-10716 6.7 X 107° 2
0.5 - sp(p?) X  =3.0x107% 1.7x1072 1
0.1 - sp(0.5p?) X  =34x107% 1.9x1073 2
0.5sin(p?) X  —6.1x1073 4.4x107? 4
K\"all'en--Lehmann Spectral Density for Gaussian NN-FTs
Free field (f=0) £=0.5-5p(p?) f=-08:-p?

Figure 1: Killén-Lehmann spectral density p(m?) for three
Gaussian NN-FTs. The free field (left) and negative linear
correction (right) show concentrated spectral weights with
small NNLS residuals, confirming the KL representation and
RP. The positive softplus correction (center) fails to admit
a KL representation (high residual), violating RP. Bar color
indicates RP status: green = satisfied, red = violated.

3.2 Architecture Space Scan

Figure 2 shows the RP landscape in the (a, ) parameter space of
the correction f(p?) = a - softplus(f - p?), evaluated on 1,271 grid
points (41 x 31) using the direct lattice RP check on a 102 lattice.

Of the 1,271 configurations tested, 65 (5.1%) satisfy reflection pos-
itivity. The RP-admissible region is not simply connected and shows
a structured pattern: it is concentrated around « ~ 0 (small correc-
tions) and extends along specific directions in the (a, f) plane. This
confirms that reflection positivity imposes a nontrivial constraint
on NN-FT architectures—generic corrections violate it.

3.3 Transfer Operator Analysis

Table 2 summarizes the transfer operator RP analysis across 120
architectural configurations (4 activations X 5 couplings X 3 masses
X 2 weight constraints), using a spatial lattice of size Lgpytia) = 1
with 17-point field discretization.

The overall RP fraction is very low (1/120 = 0.8%), with only
one configuration—linear activation with unconstrained weights—
achieving RP. This reflects the stringent nature of the transfer
matrix positivity condition: the exponential Boltzmann weight
T(@out, ¢in) = exp(—Siink) must produce a positive-definite ma-
trix when discretized, which requires careful balance between the
kinetic, mass, and interaction terms.

Conference’17, July 2017, Washington, DC, USA

Reflection Positivity: f(p?) = a - softplus(8 - p?)
65/1271 RP (5.1%)

B RP satisfied
B RP violated

Figure 2: Reflection positivity in the parameter space of
Gaussian NN-FT corrections f(p?) = a-softplus(f- p?) on a 102
lattice with m? = 1.0. Green = RP satisfied; red = RP violated.
Of 1,271 configurations, only 65 (5.1%) are RP-admissible. The
admissible region concentrates near o = 0 and shows a struc-
tured boundary.

Table 2: Transfer operator RP by activation function and
weight constraint. Tested on Ly, = 1 with 5 coupling values
(A € {0,0.1,0.5,1.0,2.0}) and 3 mass values (m? € {0.5,1.0,2.0}).
Only 1 of 120 configurations is RP-positive, highlighting the
stringency of transfer matrix positivity.

Activation W free W=VTV Total RP
Linear 115(6.7%)  0/15 (0%) 1/30
ReLU 0/15(0%)  0/15 (0%) 0/30
Tanh 0/15 (0%)  0/15 (0%) 0/30
Softplus 0/15 (0%) 0/15 (0%) 0/30
Total 1/60 (17%)  0/60 (0%)  1/120

Transfer Operator Reflection Positivity by Architecture

W free

0-200 mm w=vTV

0.175
0.150
0.125

0.100
115

Fraction RP

0.075

0.050

0.025 o1 ons ons ons ons ons os

0.000

Linear RelU Tanh Softplus
Activation Function

Figure 3: Fraction of transfer operator configurations satis-
fying RP, stratified by activation function and weight con-
straint. The linear activation with unconstrained weights is
the only class that achieves any RP configurations. Nonlinear
activations uniformly fail RP in this discretization regime.

Figure 3 visualizes the RP fractions. The key insight is that nonlin-
ear activation functions (ReLU, tanh, softplus) introduce structure
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Table 3: OS axiom compliance for ¢p* NN-FT on a 62 lattice
(m? = 1.0, n = 20,000 samples). OSO (regularity), OS3 (sym-
metry), and 0S4 (clustering) are satisfied for all couplings.
0OS1 (translation invariance) shows violations due to Monte
Carlo noise at finite sample size. OS2 (reflection positivity)
shows small negative minimum eigenvalues attributable to
statistical fluctuations, with A, = O(1073) comparable to
the noise threshold 0(1073).

A0S0 0S1 OS2 ARE 083 084
0.0 v V4 - —41x107% v V4
005 v - —46x1073 v V4
0.1 v V4 - —23x107% v V4
0.5 v V4 - —49x1073 V4
1.0 v V4 - -38x107% V4
2.0 v V4 - —50x1073 V4
5.0 v V4 - -32x107% v V4

0S Axiom Compliance (62 lattice, m? = 1.0, n =20,000)

[ Pass

0s0 . Fail

(Regularity)
0s1
(Covariance)
0S2

(Refl. Pos.)

0s3
(Symmetry)

0s4

(Clustering)
® o S o © o N o
RS K & o K ~ o o
* coupling A

Figure 4: OS axiom compliance heatmap for ¢p* NN-FT across
coupling values. OSO0 (regularity), OS3 (symmetry), and 0S4
(cluster property) pass uniformly. OS1 and OS2 show Monte
Carlo noise-induced failures that are consistent with the
theory being physically valid at all tested couplings.

in the transfer operator that systematically breaks the positive-
definiteness condition. This suggests that for layered NN-FTs, RP
requires either (i) linear propagation between time slices, or (ii)
significantly larger lattice extents where discretization effects are
mitigated.

3.4 Interacting NN-FT OS Axioms

Table 3 and Figure 4 present the OS axiom verification for ¢* NN-
FTs on a 62 lattice with m? = 1.0 and n = 20,000 Monte Carlo
samples.

The results reveal an important subtlety: even for the free theory
(A = 0), the RP minimum eigenvalue is —4.1x10~3, which is negative
but of the same order as the estimated noise threshold (~ 1.8 x
1073). Since the free (pg theory is known to be OS-satisfying from
constructive QFT [4], this indicates that the negative eigenvalues
are Monte Carlo artifacts rather than genuine RP violations. The
minimum RP eigenvalue remains in the range [-5x1073, =2x1073]

Anon.

Coupling Dependence of RP (82 lattice, m? =1, n = 15,000)

0.000 f-—#-ssg=- t 15000
S
. |

_ —0.002 L 14500
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o . »
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= F 13000
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9* coupling A

Figure 5: Minimum reflection positivity eigenvalue A, (R)
versus ¢* coupling A on an 8? lattice (m? = 1.0, n = 15,000). The
eigenvalue fluctuates at O(1072) with no systematic trend,
consistent with RP being satisfied (the negative values are
attributable to MC statistical noise, as evidenced by their
presence even at A = 0).

across all couplings, showing no systematic degradation, which is
consistent with the constructive QFT result that (pg satisfies the OS
axioms nonperturbatively [3].

3.5 Coupling Dependence

Figure 5 shows the minimum RP eigenvalue as a function of ¢*
coupling on an 82 lattice with 15,000 MC samples. The eigenvalue
fluctuates around —10~2 with no clear trend, and the effective sam-
ple size neg decreases from 15,000 (at A = 0) to approximately 11,600
(at A = 3), reflecting the increasing importance sampling variance.

3.6 Dimensional Scaling

Figure 6 presents the RP fraction from the Gaussian architecture
scan across dimensions d = 2, 3, 4. The RP-admissible fraction in-
creases dramatically from 7.7% atd = 2 (L = 10) to 86.7% atd = 3
(L=5)andd =4 (L =3).

This counterintuitive result—that RP is easier to satisfy in higher
dimensions—has two contributions: (i) the lattice size L decreases
with d (for computational tractability), reducing the number of in-
dependent momentum sectors and hence the number of constraints;
and (ii) the lattice Laplacian eigenvalue spectrum broadens with d,
making the propagator denominator more robustly positive.

4 CONCLUSION

We presented the first systematic computational investigation of
Osterwalder—Schrader axiom compliance for neural network field
theories in dimensions d > 2, addressing an open problem posed
by Ferko et al. [2].

Our principal findings are:

(1) Linear momentum corrections preserve RP. For Gauss-
ian NN-FTs, corrections of the form f(p?) = ¢ - p® preserve reflec-
tion positivity because the modified propagator retains the Kallén—
Lehmann representation as a single-particle spectral density. In
contrast, nonlinear corrections (softplus, oscillatory) break this
structure and violate RP.
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Dimensional Scaling of RP Fraction
Gaussian NN-FTs, f(p2) = a - sp(B - p?)

1007 124/143 124/143
=5 (L=3)

804

60 1

404

RP-admissible fraction (%)

204 11/143
(L=10)

2 3
Spacetime dimension d

Figure 6: Fraction of Gaussian NN-FT configurations satis-
fying RP versus spacetime dimension d, from scanning 143
parameter configurations per dimension. The RP fraction
increases from 7.7% (d = 2) to 86.7% (d = 3, 4), partly reflecting
reduced lattice resolution at higher d.

(2) The RP-admissible subset is structured but small. Only
5.1% of the scanned neural network correction parameter space
is RP-admissible in d = 2. The admissible region has a nontrivial
geometry concentrated near zero correction amplitude, confirming
that RP is a genuinely constraining condition on NN-FT architec-
tures.

(3) Transfer operator RP is highly restrictive. For layered
architectures, only 0.8% of tested configurations satisfy RP, with
linear activations being the only successful class. This indicates that
nonlinear activation functions introduce transfer operator structure
that systematically violates positive-definiteness.

(4) Interacting theories are consistent with OS compliance.
The (,p;L NN-FT satisfies OS0, OS3, and OS4 at all couplings. The
0S2 (RP) minimum eigenvalues are of O(10~%) across all couplings
including A = 0, consistent with MC noise rather than genuine
violations, in agreement with the constructive QFT result that qog
is OS-satisfying [3].

Limitations and future work. Our lattice analysis is limited
by finite volume and MC sampling noise. The transfer operator
analysis uses a single spatial site (Lgpatia1 = 1), which may not
capture multi-site positivity structures. Future work should investi-
gate larger lattices, alternative importance sampling schemes (e.g.,
Hamiltonian Monte Carlo), and the continuum limit of the RP condi-
tions. The dimensional scaling result calls for careful disentangling
of lattice-size and dimension effects. Finally, extending the anal-
ysis to non-Gaussian NN-FTs with multiple hidden layers and to
gauge theories represents a natural next step toward a complete
classification of physically admissible NN-FTs.
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